Shell Eco-Marathon

Urban Concept: Team #44

Team: Mallory Bartow(ME), Chris Breath(ME), Coury Courtney(EE), Dylan DeGruy(ME), Dante' Hebert(ME), Garrett McCarrol(EE), Huyen Pham(ME), Sam Sciortino(ME)

- Advisor: Professor Gabriel De Souza
- Alumni Advisor: Greg Talmage
- **Sponsors:** Shell, Dr. Dimitris Nikitopoulos

Objective Statement

Team #44's objective is to design, manufacture, and test LSU's first **Urban Concept Vehicle** to successfully compete and place in all relevant categories of the Shell Eco-marathon Americas 2020 competition. Emphasis will be placed on maximizing fuel efficiency in an urban driving environment.

Customers

- Primary
 - 2020 Shell Eco-marathon Judges 0
 - Shell 0
 - Driver 0
- Secondary
 - **Automotive Industries** 0
 - LSU 0

Speaker: CB Slide Author: CB References/ Appendix

3

Competition Info

- Shell Eco-marathon Americas 2020
 - Sonoma, CA 0
 - April 1 4 0
- Track
 - 0.94 Miles per lap 0
 - 6 laps 0
 - 1 complete stop per lap 0
- Competition
 - 6 attempts 0
 - Best attempt recorded 0

Speaker: CB

References/ Appendix

Slide Author: CB

Competition Scoring

References/ Appendix

- Efficiency determined by both fuel consumption and electrical energy consumption
- Gasoline equivalents are calculated and totaled

 $Fuel \ Economy \ (mpg) = \frac{Miles \ Traveled \ (miles)}{Fuel \ Consumption \ (gal)}$

Fuel Consumption = Gasoline (gal) + Equivalent Electricity (gal)

 $Equivalent \ Electricity \ (mpg) = \frac{Electrical \ Consumption \ (kWh)}{0.1875 * 34.99}$ Speaker: CB Slide Author: CB 5

Off-Track Awards

- **Communications Award**
- Vehicle Design Award
- **Technical Innovation Award**
- Safety Award •
- Perseverance & Spirit of the Event Award
- **Circular Economy Award**

@lsu_urban_concept

therealurbanconcept

Background

Subsystems

Safety

Speaker: CB References/ Appendix

Slide Author: CB

Competing Technologies

1st Place in Previous Years

- 2019
 - Wawasee High School Ο
 - Diesel 680.7 mpg Ο
- 2018
 - Mater Dei High School Ο
 - Gasoline 841.3 mpg Ο
- 2017
 - Mater Dei High School Ο
 - Gasoline 602.3 mpg Ο

2019 Winner Wawasee High School

Safety

Speaker: CB **References/Appendix**

Slide Author: CB

[4]

Key Functions

Function	Description	
Protect the Driver	Vehicle must keep the driver safe from outside impact, weather effects, and potentially dangerous elements.	
Move	Vehicle must be able to easily move across the ground surface.	
Steer	Driver can turn the vehicle left/right.	
Stop the Car	Driver can stop the vehicle while remaining seated inside.	
Convert Power	Vehicle must be able to convert the stored energy into mechanical energy.	
Transfer Power	Vehicle must be able to use mechanical energy to propel itself.	

Background

Subsystems

Speaker: DH Slide Author: CB References/ Appendix

8

Qualitative Constraints

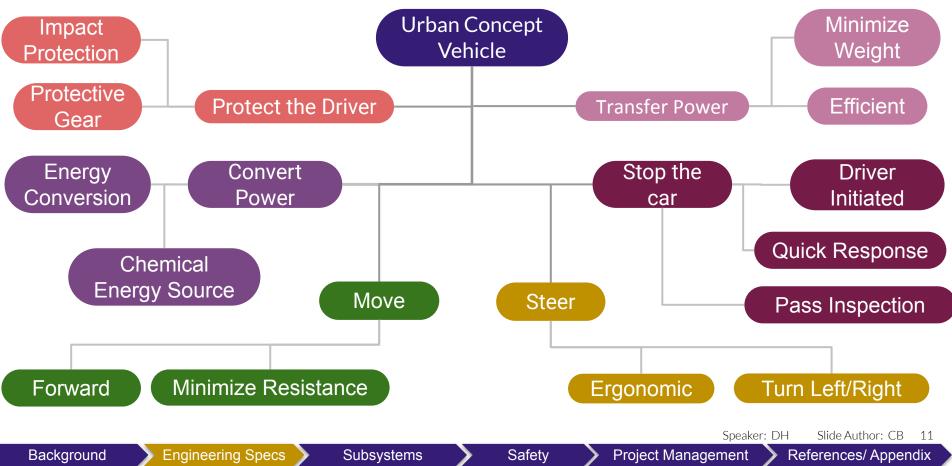
Constraint	Description
Maximize Efficiency	Vehicle will have the highest possible energy efficiency.
Reliability	Vehicle is able to perform repeated tests without failure.
Weather Resistant	The body and external parts are durable and water-resistant.
Ease of Manufacturing	Parts and components are easy to manufacture and assemble.
Accessible Fuel and Power	Fuel source and battery compartment are easy to access for
Source Compartment	refueling/recharging.

Speaker: DH Slide Author: CB

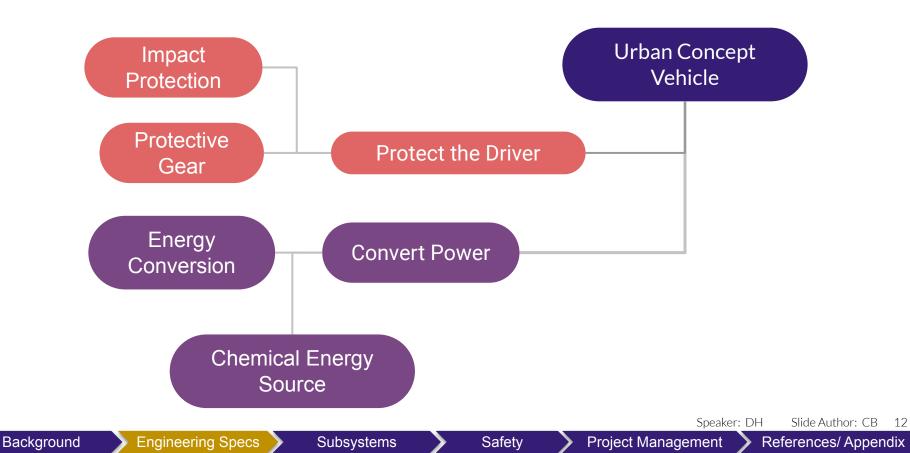
References/ Appendix

9

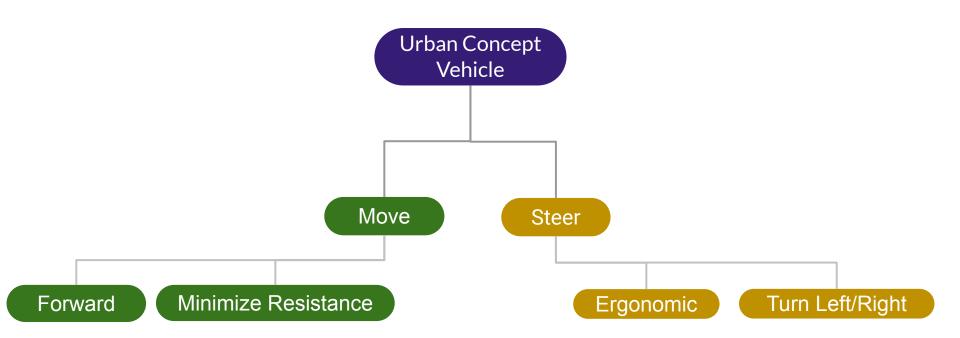
10

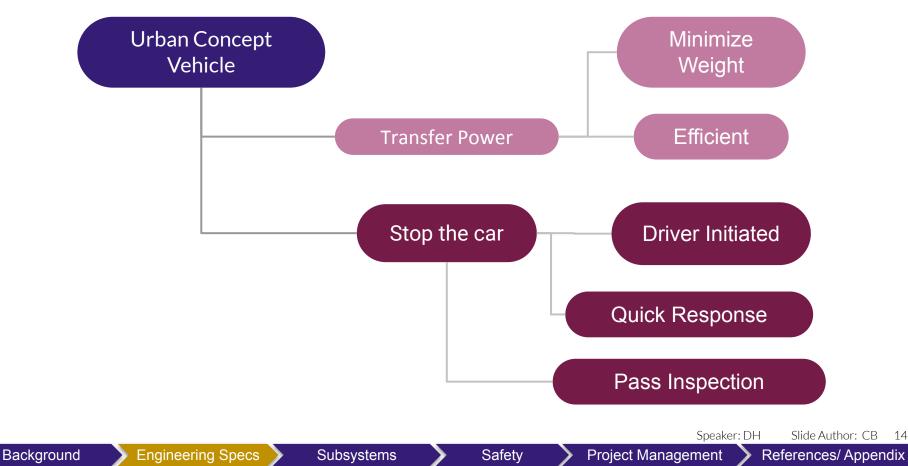

Quantitative Constraints

Constraint	Description
Budget	\$10,000 Proposed Budget from LSU
Vehicle Dimensions	Internal and External Dimensions set by Shell Eco-marathon
Vehicle Weight	225 kg max Vehicle Weight
Driver Weight	75 kg min Driver Weight
Velocity	Average Velocity of at least 15 mph

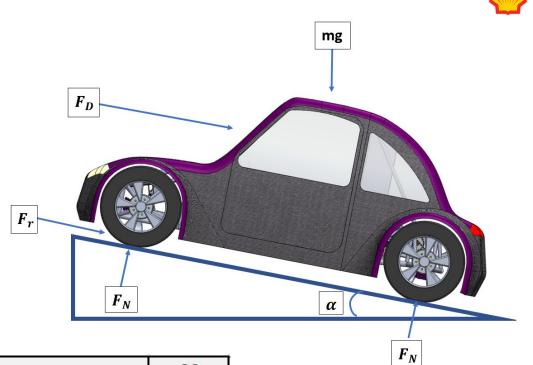

Safety

Speaker: DH Slide Author: CB **References/Appendix**





14



Efficiency Factors

List of Parameters			
Frontal Area of Car (m^2)	А	1.1	
Percent Grade	P_{G}	0.02	
Vehicle Mass (kg)	m	200	
Drivetrain Efficiency	8	0.78	
Tire Rolling Resistance Coefficient	C_{RR}	0.01	
Brake and Steering Resistance	C_{BSR}	0.003	
Drag Coefficient	C_D	0.3	
Air Density (kg/m^3)	ρ	1.225	
Wheel Radius (in)	r	11.5	
Time to Accelerate (s)	t	10	

Engineering Specs

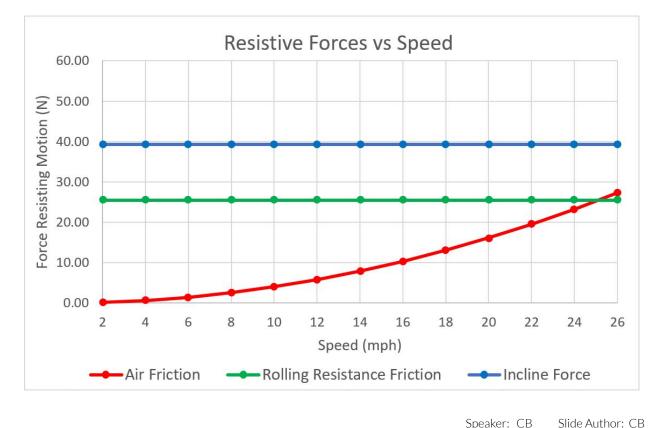
Background

Velocity (mph)		
F-Air (N)	$F_{air} = 0.5 C_D A \rho v^2$	27.31
F-RR (N)	$F_{RR} = mg(C_{RR} + C_{BSR})$	25.51
F-Incline (N)	$F_{incline} = mgP_G$	39.24
F-Resistance (N)	$F_{Resistance} = F_{air} + F_{RR} + F_{incline}$	92.05

Subsystems

Safety

Speaker: CB **Project Management References/Appendix**


Slide Author: CB 15

Efficiency Factors

Prioritize:

- 1. Minimize Weight
- 2. Reduce Rolling Resistance
- 3. Minimize Drag

Background

Subsystems

Project Management

References/ Appendix

16

17

Driver

Metric	Weight	Coury	Mallory	Huyen	Dante'
Weight (lbs)	3	155.4	126.2	96	155.0
Height (in)	1	35	33.75	32.25	35
Width (in)	1	17.5	15.25	14.5	18

$$\% Diff = \left|\frac{x_1 - x_2}{x_{min}}\right| * 100 * Weight$$

Background

Speaker: CB Slide Author: CB References/ Appendix

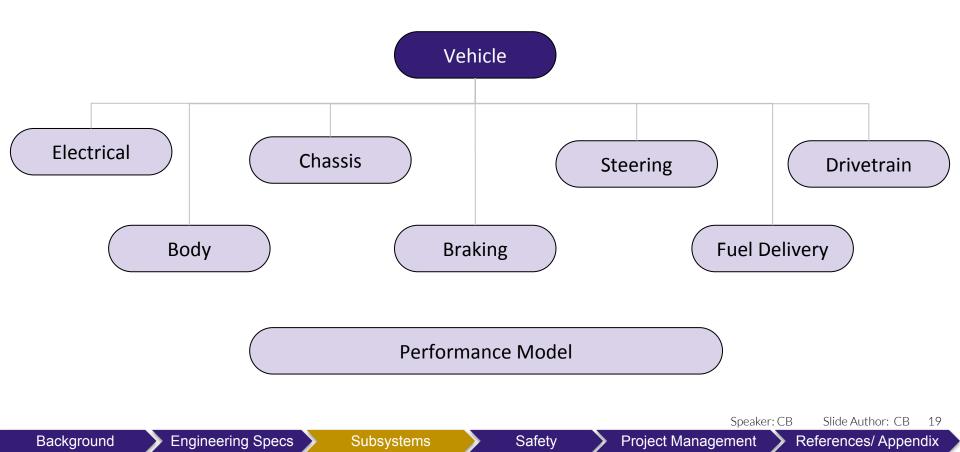
Driver

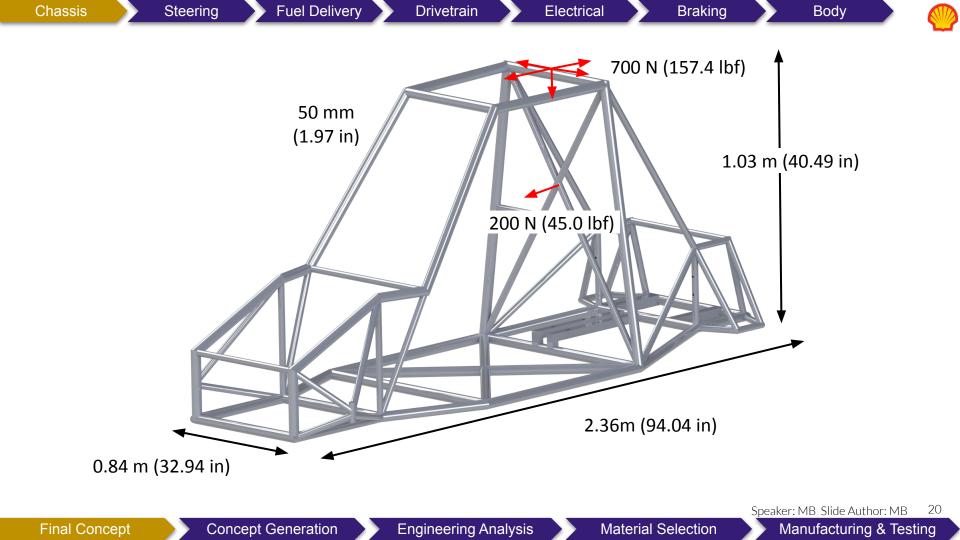
Metric	Coury & Dante'
Weight (lbs)	0.38
Height (in)	0.00
Width (in)	3.45
Total	4.60

Subsystems

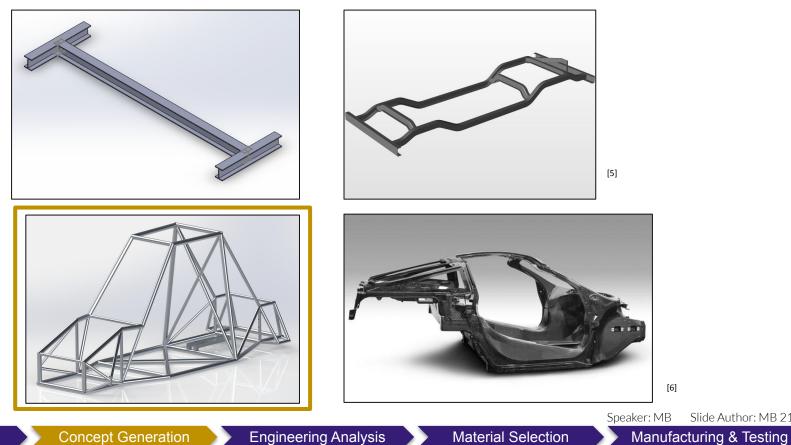
nt References/

Speaker: CB


References/ Appendix

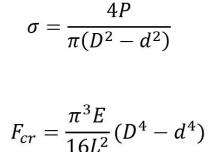

18

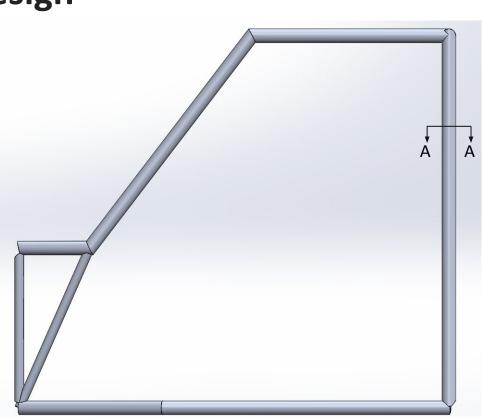
Slide Author: CB

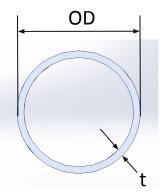

Subsystem Breakdown

Concepts

Final Concept

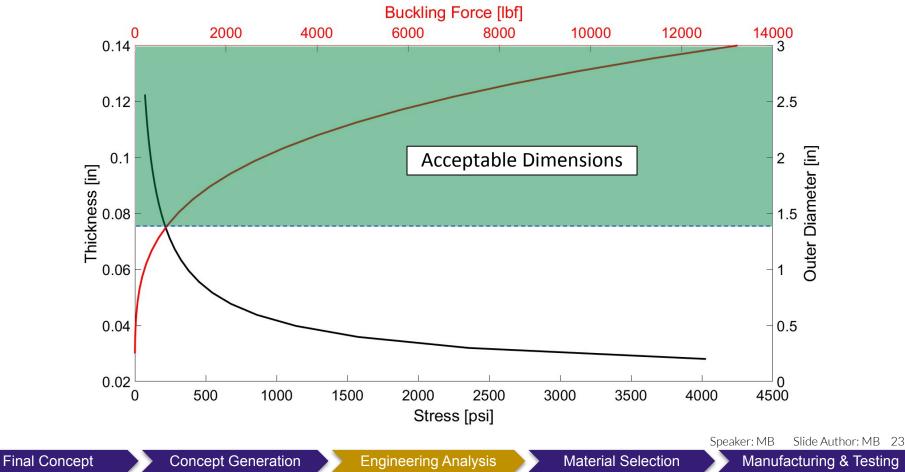

Slide Author: MB 21




Parametric Design

Steering

- Total Length = 4.7 m (185.08 in)
- Arbitrary Load = 700 N (78.7 lbf)


Section A-A

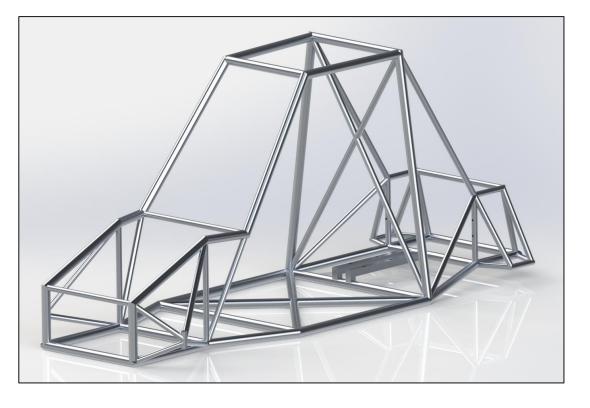
Final Concept

Concept Generation

Speaker: MB Slide Author: MB 22 Manufacturing & Testing

Stress & Buckling Force vs. Tube Size

Electrical

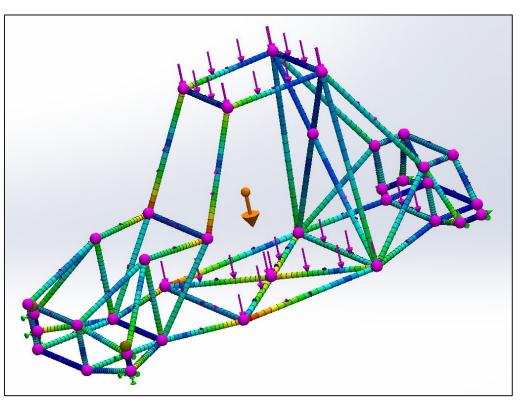

Braking

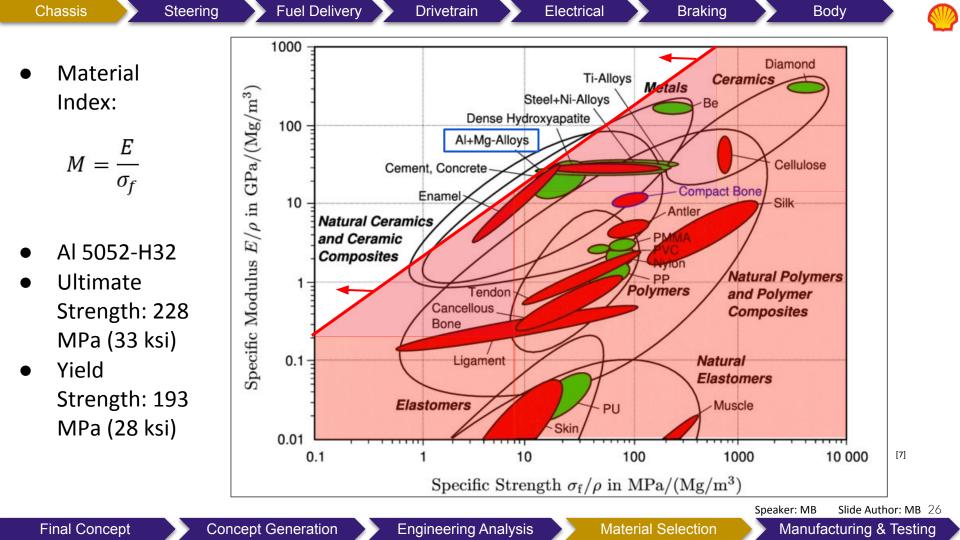
Body

Weight Reduction

Steering

- Original Tubing Size:
 - Outer Diameter 1.50 in
 - Thickness 0.083 in
- Original Weight 46.7 lbf
- 21% Weight Reduction
 - Outer Diameter **1.00 in**
 - Thickness 0.065 in
- Final Weight 36.9 lbf





Static Load Analysis

Steering

- Load Cases:
 - 700 N in all directions
 - Driver, Body, and Engine
 - 200 N Safety Harness
 - Torsional Load
 - Buckling
- Minimum Factor of Safety:
 - Driver, Body, and Engine: 48.2 MPa
 - Max Deflection: 6.0 mm (0.24 in)
 - F.S. = 4.05

Manufacturing

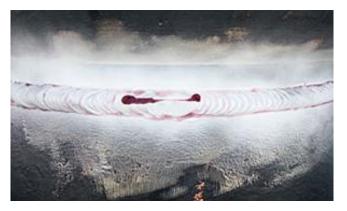
- Material
 - VR3 Engineering

Steering

- CNC Notched and Formed Tubing
- Cost \$2,830
- Welding
 - 4043 Aluminum Tig Rod

- December
 - Week 1: Order Materials
 - Week 2: Processing and tube shipping
 - Week 3: Manufacturing by VR3
 - Week 4: Manufacturing by VR3
- January
 - Week 1: Chassis Materials Ship
 - Week 2: Begin welding
 - Week 3: Welding Cont.
 - Week 4: Welding Cont.
- February
 - Week 1: Complete Chassis

Final Concept


Steering

Testing

- Testing
 - Liquid Dye Penetrant of Welds
 - Ultrasonic Testing of Welds
 - Destructive Testing of Welds

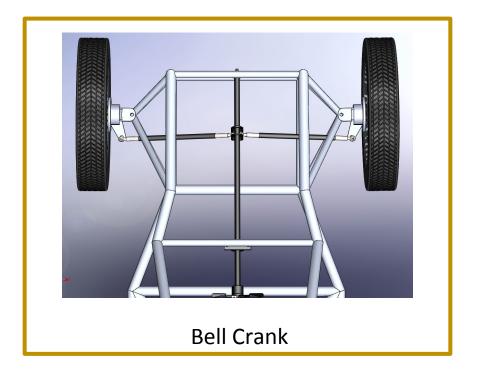
- January
 - Week 1: Destructive Testing
- February
 - Week 2: Liquid Penetrant and Ultrasonic Testing

Speaker: MB Slide Author: MB 28 Manufacturing & Testing

Steering

- Bell crank design
- Ackermann geometry
- Materials: 6061 Aluminum and Chromoly Steel

Steering


Final Concept

Concept Generation

Engineering Analysis

Speaker: DD Slide Author: DD 29 Manufacturing & Testing

Concepts

Rack and Pinion

Final Concept

Concept Generation

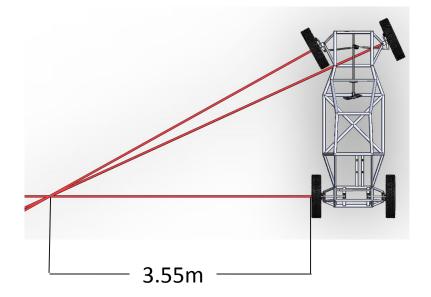
Engineering Analysis

Material Selection

Speaker: DD Slide Author: DD 30 Manufacturing & Testing

Ackermann Steering Geometry

Fuel Delivery


• Minimum turn radius: 6 m

Steering

• Turn radius as function of car geometry and steering angle:

$$r_{turn} = \frac{x_{wheelbase}}{\sin \theta} - \frac{x_{ftrack} - x_{rtrack}}{2}$$

• Steering Angle: 11. 3°

Braking

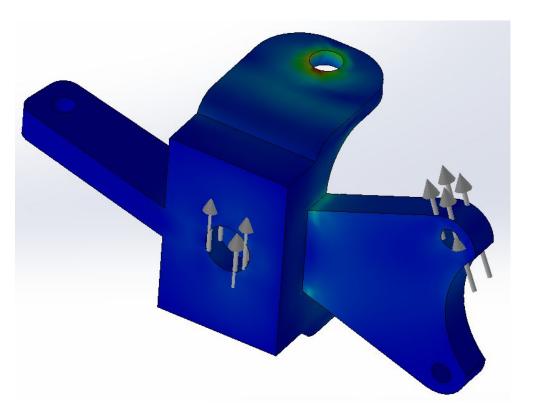
Chassis

Drivetrain

Electrical

Speaker: DD Slide Author: DD 31
Manufacturing & Testing

Body



Load Analysis

- Loads Applied: •
 - 500 N Car Weight Ο

Steering

- 55 N-m Brake Torque Ο
- Max Stress: 72.34 MPa
- Yield Strength: 276 MPa
- Factor of Safety: 3.8

Speaker: DD Slide Author: DD Manufacturing & Testing

32

Material Selection

Steering

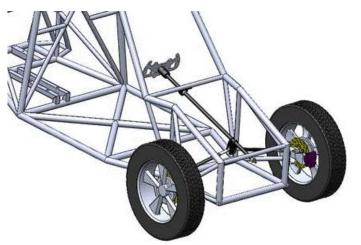
	Chromoly Steel Yield: 435 MPa (63.1 ksi)	Aluminum Yield: 276 MPa (40 ksi)
Steering Shaft	Weight: 1.84 lbs FoS: 3 Angular Deflection: 0.0008°	Weight: 0.44 lbs FoS: 3.55 Angular Deflection:0.0021°
Linkages	Weight: 2.16 lbs FoS: 32.7	Weight: 0.746 lbs FoS:11
Steering Knuckles	Weight: 3.87 lbs FoS: 6.1	Weight: 1.32 lbs FoS: 3.8

Final Concept

Speaker: DD Slide A

Slide Author: DD 33

Manufacturing & Testing



34

Manufacturing

Steering

- Cost:
 - Shaft w/Pitman arm
 (Purchase and weld) \$21.30
 - Linkage Parts (Purchase) \$92.29
 - Steering Knuckles (CNC) \$300

- December
 - Week 1: Order Materials
 - Week 2: Processing and Shipping
 - Week 3: Create Assembly Jig
- January
 - Week 1: CNC Steering Knuckles
 - Week 2: Linkage Assembly
- February
 - Week 2: Addition to Chassis

Speaker: DD Slide Author: DD

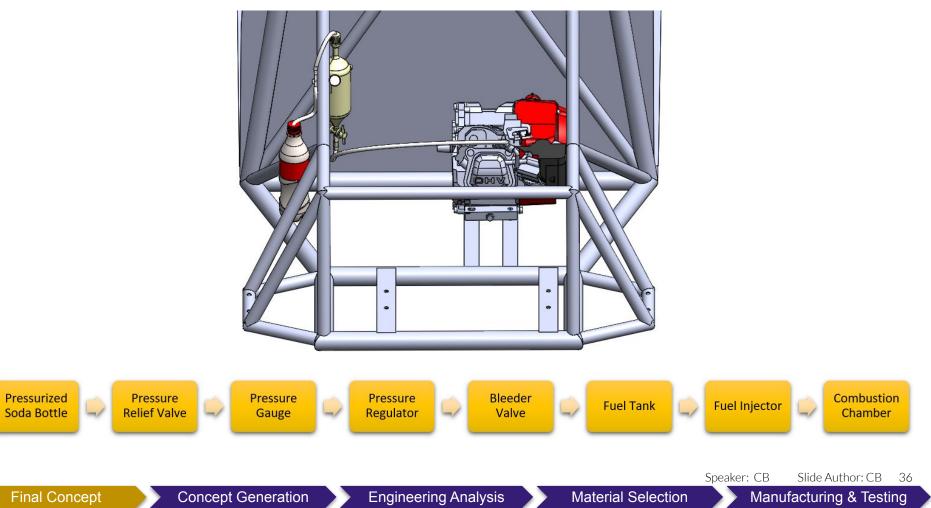
Manufacturing & Testing

35

Testing

- Testing
 - Liquid Dye Penetrant of
 Pitman arm Weld

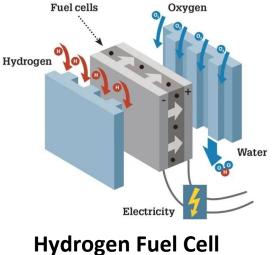
Steering


- January
 - Week 2: Geometry testing
- February
 - Week 3: Live motion turn radius test

Speaker: DD Slide Author: DD

Manufacturing & Testing

Chassis


Electrical

Concepts: Energy Source

Steering

[11]

Final Concept

Speaker: CB Sli

Slide Author: SS 37

Steering

Concepts

Mechanical Fuel Pump

[13]

Final Concept

Concept Generation

Engineering Analysis

Material Selection

Speaker: CB Slide Au

Slide Author: CB 38

Electrical

Braking

Ecotrons Fuel Injection Kit

Capabilities

Dual Performance Maps

Steering

- On the Fly Calibration
- **External Calibration**

Small Engine Fuel Injection Kit

39

Slide Author: SS Manufacturing & Testing

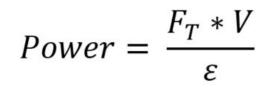
Speaker: CB

Electrical

Braking

40

Engine Power Required


Steering

Total Resistive Force = $F_T = F_a + F_r + F_i$

Force of Air Drag = $F_a = 0.5C_D A \rho V^2 = 17.4 N$

Force of Rolling Resistance = $F_r = mgC_r = 25.5 N$

Force from Incline = $F_i = mgP_g = 39.2 N$

Power Required = 4 *horsepower*

Concept Generation

Speaker: CB Slide Author: SS

Engine Power Required

Steering

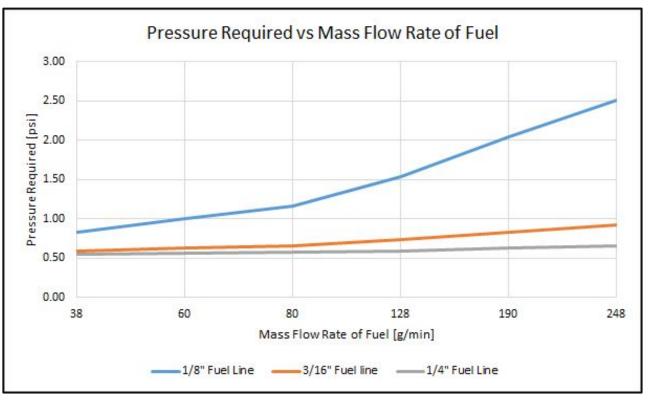
Power required to maintain 26 mph is 4 hp

Final Concept

Speaker: CB Slide Author: SS

Manufacturing & Testing

41


Fuel Line Sizing

Steering

Pressure needed to move the correct amount of fuel

$$P_1 = \rho g \left(\frac{h_1}{g} + \frac{\alpha_1 V_2^2}{2g} + z_2 \right)$$

Selected 3/16" Diameter Fuel Line

Speaker: CB Slide Author: SS 42 Manufacturing & Testing

Manufacturing

Steering

- Manufacturing
 - Install Ecotron Fuel Injection
 System
 - Build Pressurized Fuel System
 - Install Engine into Vehicle
- Cost
 - o **\$1160**

- January
 - Week 4: Install Fuel Injection
- February
 - Week 2: Build Fuel System
 - Week 2: Install Engine

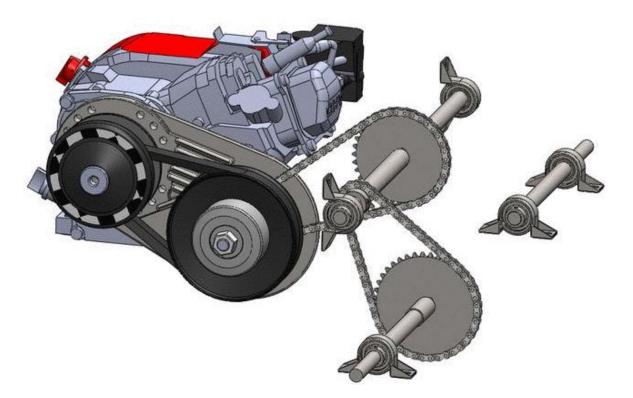
Final Concept

Speaker: CB Slide Author: SS 43 Manufacturing & Testing

Testing

- **Testing Plan**
 - **Pressurized Bottle** Ο

Steering


- Destructive testing for maximum pressure
- Tune the ECU Ο
 - Correct Air/Fuel Ratio
 - Build Performance Map
 - **Determine Fuel** Consumption

- February
 - Week 1: Destructive Bottle Ο Testing
 - Week 3: ECU Tuning Ο
 - Week 4: ECU Tuning Ο
- March
 - Week 1: ECU Tuning Ο
 - Week 2: ECU Tuning Ο

Speaker: CB Slide Author: SS Manufacturing & Testing

Drivetrain

Final Concept

Speaker: SS Slide Author: CB 45 Manufacturing & Testing

[16]

Concepts

Comet TAV 30-75 Torque Converter

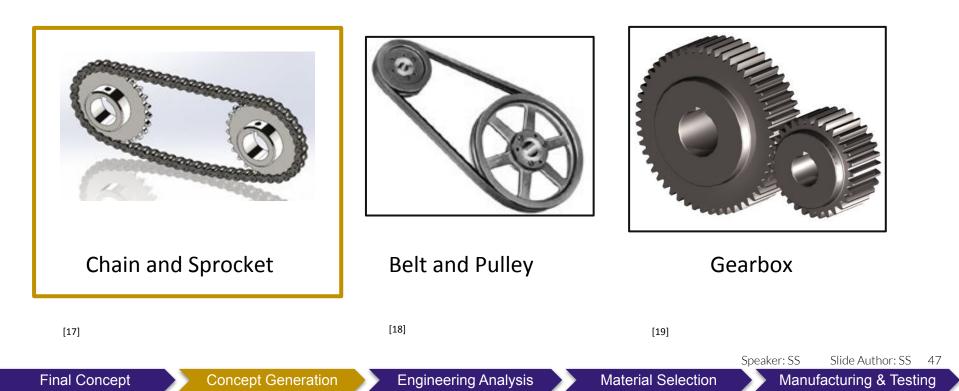
- Engagement RPM = 2200
- Designed for 18"+ tall tires
- Variable gear ratio 2.7:1 0.9:1

Centrifugal Clutch

- Engagement RPM = 1800
- Designed for < 16" tall tires
- Single gear ratio 1:1

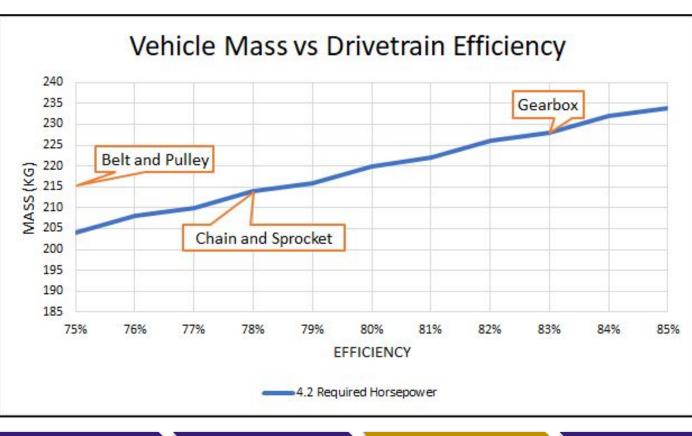
[15]

Slide Author: SS


46

Speaker: SS

Steering



Concepts

Steering

Chassis

Fuel Delivery

 $Total \ Efficiency = n_T$

$$n_T = n_{brg}^{N_{brg}} * n_{cs}^{N_{cs}}$$

Body

Chain Drive Efficiency = 78% Chain Drive Weight = 5 kg

Gearbox Efficiency = 83% Gearbox Weight = 15 kg

Pulley Drive Efficiency = 75% Pulley Drive Weight = 5 kg

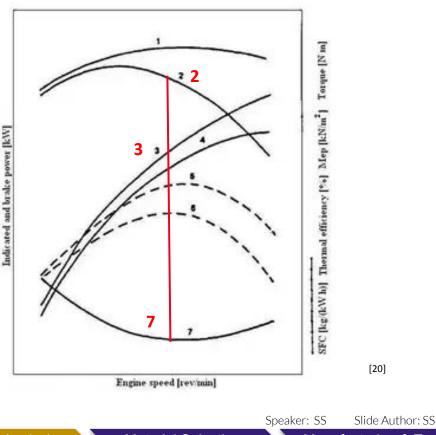
Final Concept

Concept Generation

Engineering Analysis

Drivetrain

Electrical


Braking

Speaker: SS Slide Author: SS 48 Manufacturing & Testing

Engine Performance Curve

Steering

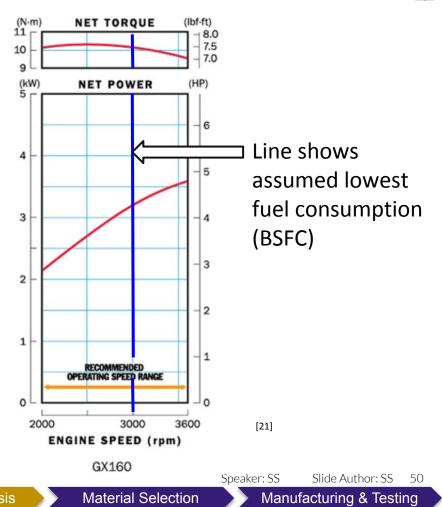
- Torque Curve 2
- Horsepower Curve 3
- Specific Fuel Consumption Curve 7

Manufacturing & Testing

49

Final Concept

Engineering Analysis

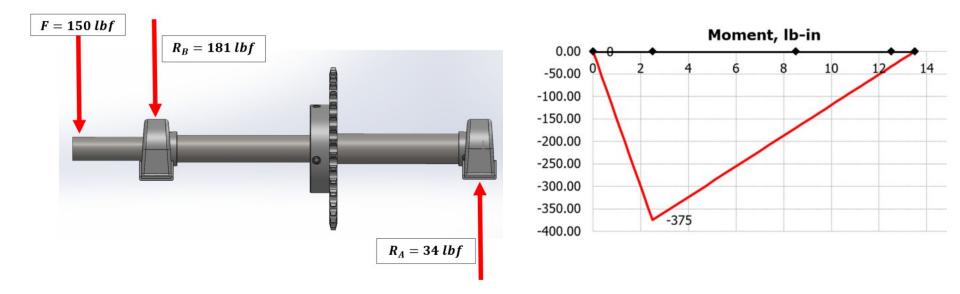


RPM Selection

Steering

Performance Curve for Honda GX160 Engine

- 3000 RPM Selected
 - 4.2 HP at 3000 RPM
 - 7.5ft-lbf at 3000 RPM
- Desired Top Speed = 26 mph
 - Gear Ratio 8.1:1


Electrical

Braking

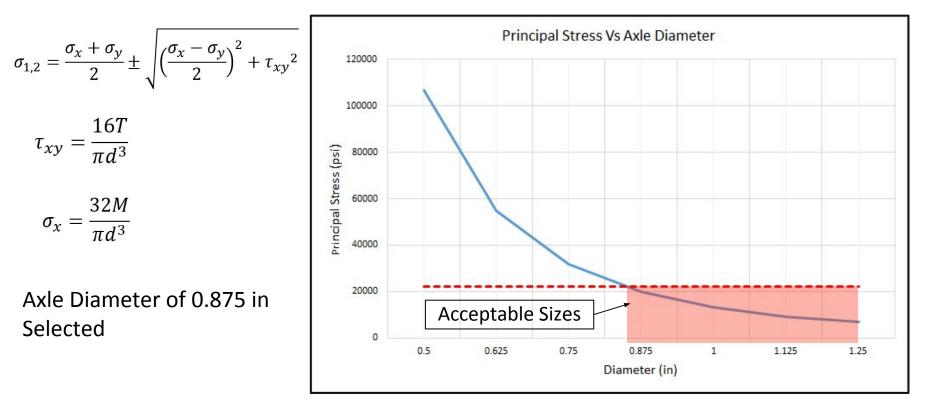
Rear Axle Design

Steering

Final Concept

Speaker: SS Slide Author: SS

Manufacturing & Testing

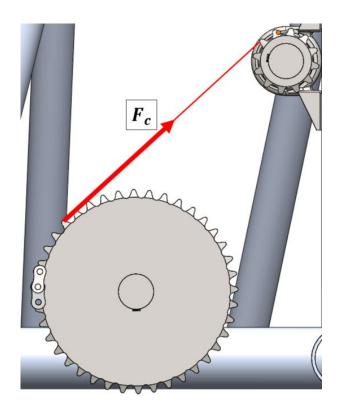

51

Braking

Rear Axle Design

Steering

Speaker: SS Slide Author: SS 52 Manufacturing & Testing


Chain Selection

Steering

Force on the Chain = $F_c = \frac{HP * 33000}{S}$ Speed of the Chain $= S = \frac{T * P * N}{12}$

> Number of Teeth on Sprocket = TPitch of the Chain = PSpeed of Sprocket = N

Maximum Force on Chain = $F_c = 277 \, lbf$

Final Concept

Chain Selection

Steering

Chain Working load Capacity = 360 lbf

Selected #40 Chain

Final Concept

Concept Generation

Engineering Analysis

Speaker: SS Slide Au

Slide Author: SS 54

Axle Material Selection

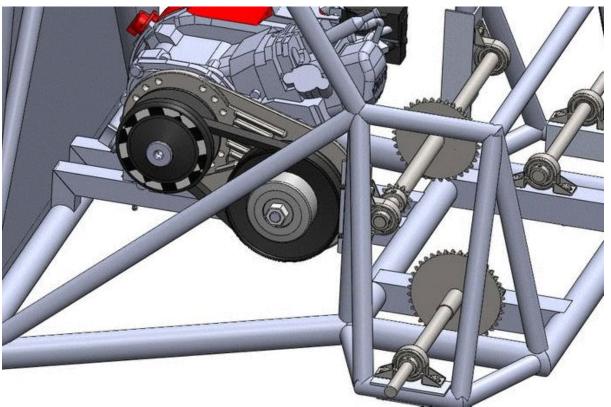
Steering

4130 Annealed Chromoly Steel

- Yield Strength = 66.5 ksi
- Machinability = 72% •
- E = 29.7 ksi

1020 Carbon Steel

- Yield Strength = 42.7 ksi
- Machinability = 72%
- E = 29 ksi


2024 Aluminum

- Yield Strength = 47 ksi
- Machinability = 76%
- E = 10.6 ksi

Tensioning

Steering

Final Concept

Engineering Analysis

Speaker: SS Slide Author: CB

Manufacturing

Steering

- Manufacturing
 - Manufacture Rear Axle
 - Manufacture Intermediate Axle
 - Instal Torque Converter to Engine
 - Install Axles to Chassis
- Cost \$75 total

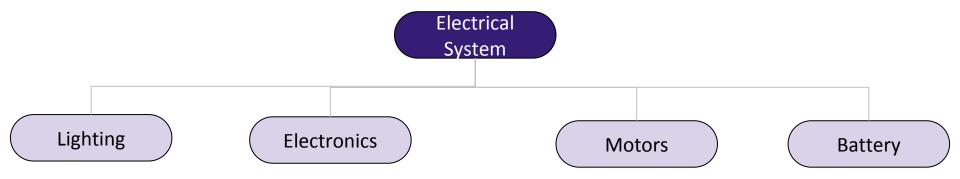
- February
 - Week 1: Rear and Intermediate Axle
 - Week 2: Torque Converter and Axle Instal

Speaker: SS Slide Author: SS

Steering

58

Testing


- Testing
 - Top speed tests to confirm the Ο correct gear ratio
 - Acceleration and Coastdown Ο testing to determine performance model coefficients

- March
 - Week 1: Top Speed Tests Ο
 - Week 2: Acceleration and Ο **Coastdown Testing**

Speaker: SS Slide Author: SS Manufacturing & Testing

Electrical System

Final Concept

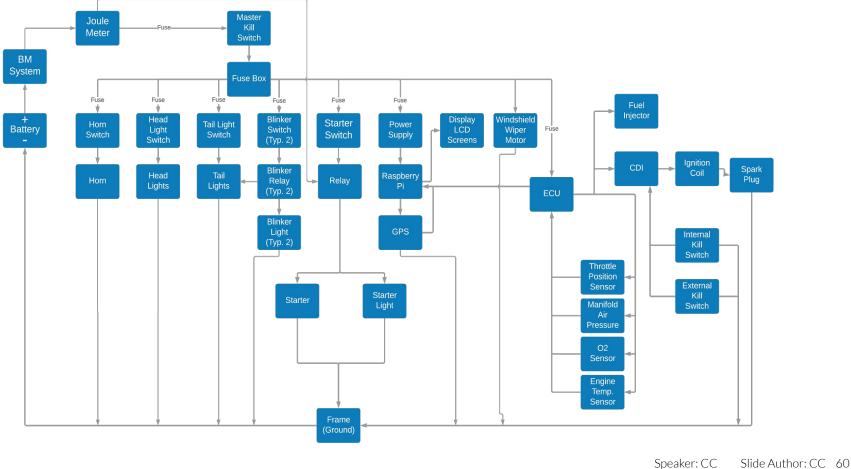
Concept Generation

Engineering Analysis

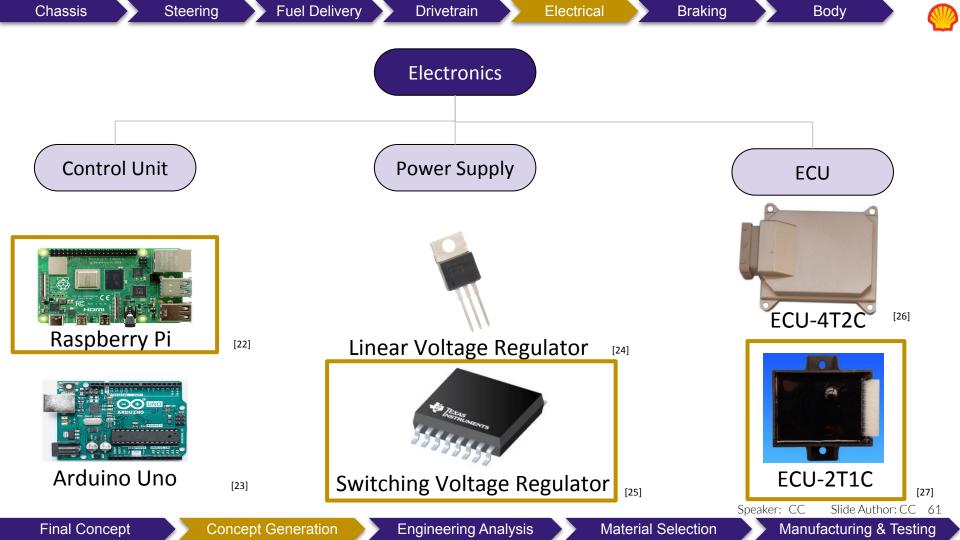
Material Selection

Braking

Speaker: CC Slide Author: CC 59

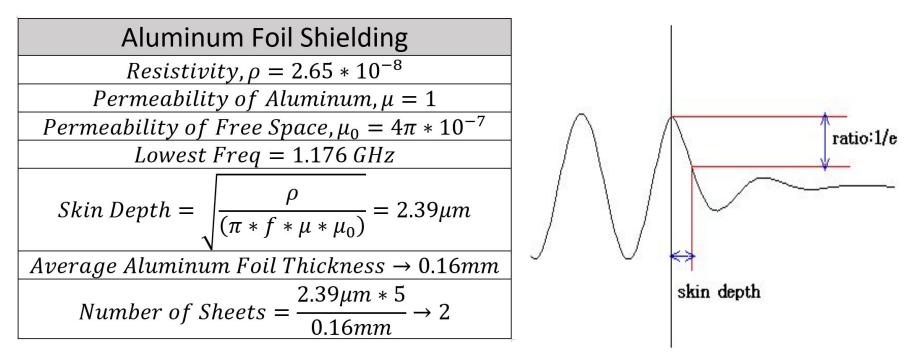

Manufacturing & Testing

Body


Steering

Braking

Final Concept

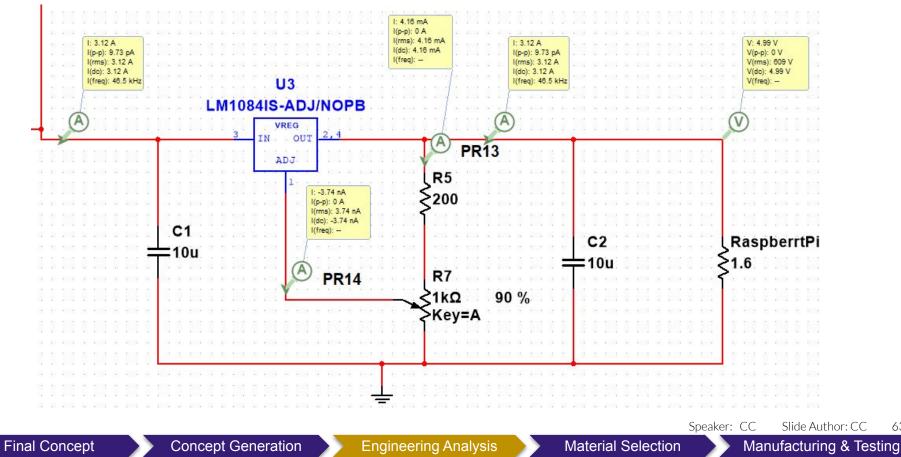


Electrical

RF Shielding

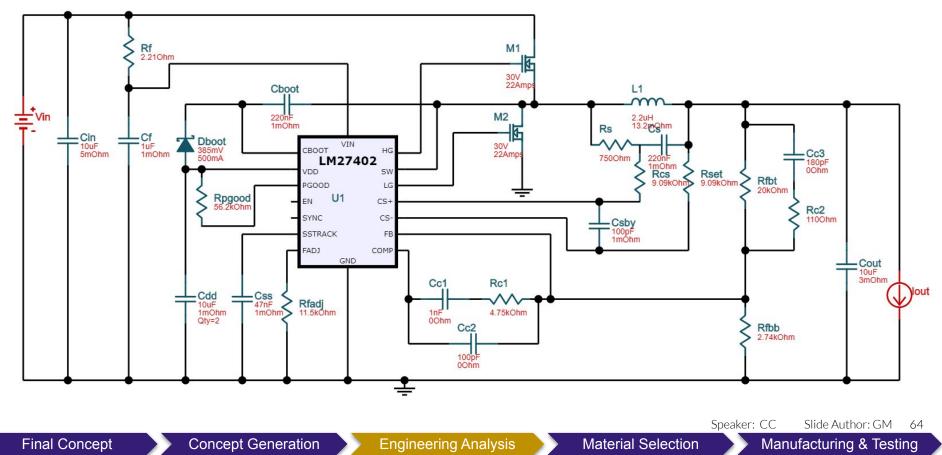
Steering

Final Concept


Speaker: CC Slide Author: GM 62

Steering

63


Electronics

Electronics

Steering

Electronics

- Manufacturing
 - PCB Ο
 - **3D Print Housings** Ο

Steering

- ECU Wiring Ο
- Cost \$40 total

- December
 - Week 3: PCB Ο
 - Week 3: Testing Ο
 - Week 3:3D Printing Ο
- January
 - Week 4: ECU Wiring Ο
- February •
 - Week 1: ECU Tuning Ο

Final Concept

Speaker: CC Slide Author: CC Manufacturing & Testing

Electronics

- Measure Voltage/Current Outputs
- Continuity of Switches and Fuses
- Thermal Testing with thermal gun •
- **Confirm Fitness Tests**

Steering

- ECU Tuning
 - Adjusting ignition timing Ο
 - Adjusting fuel injection rate Ο

- January
 - Week 1: Measure voltage and current Ο outputs
 - Week 1: Measure continuity Ο
 - Week 1: Thermal testing Ο
 - Week 1: Physical sizing test Ο
 - Week 2: ECU tuning Ο

Speaker: CC Slide Author: CC

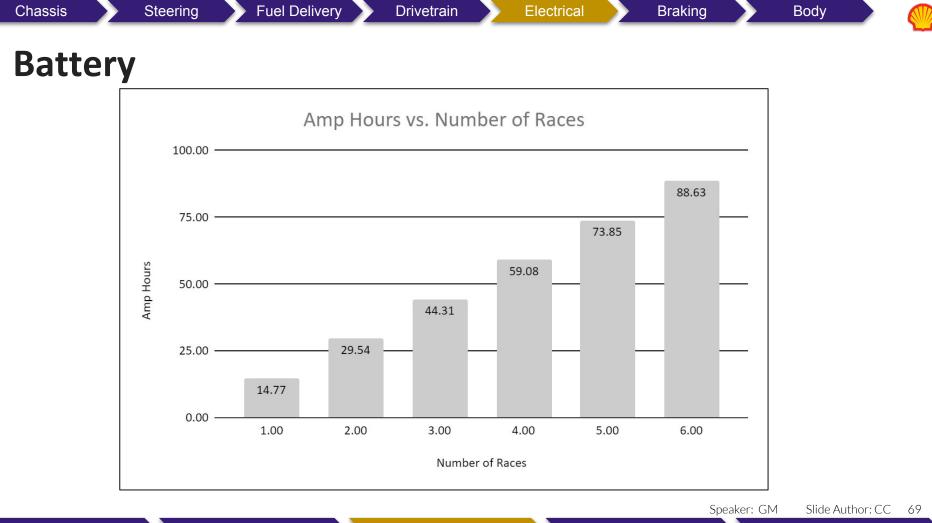
Manufacturing & Testing

66

Concepts

Slide Author: CC 67

Battery


Battery Sizing: Max Load					
	Starter	Rpi	Lighting	WindShield	Losses
Watts	1500.00	15.00	72.00	24.00	12.00
Watt Hours	81.25	7.50	60.00	12.00	6.00
Amp Hours	6.77	0.63	5.00	1.00	0.50
Amp Hour Per Race	13.90				
Battery Amp Hour	55.00				

Final Concept

Speaker: GM Slide Author: CC

Manufacturing & Testing

68

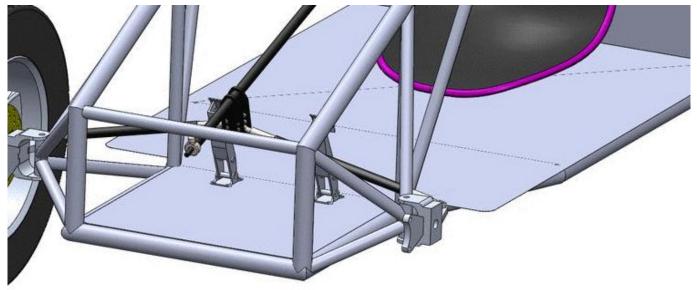
Final Concept

Concept Generation

Battery

- Manufacturing
 - Installation

Steering


- Testing
 - Verify Proper Voltage and Current Outputs
 - Verify Battery Management
 Functionality
- Cost \$650 total

- March
 - Week 1: Install
 - Week 1: Testing

Speaker: GM Slide Author: CC

Braking

Final Concept

Engineering Analysis

Speaker:DH Slide Author: CB 71 Manufacturing & Testing

Concepts

Wilwood PS1

[31]

Final Concept

Speaker:DH Slide Author: SS 72 Manufacturing & Testing Steering

Concepts

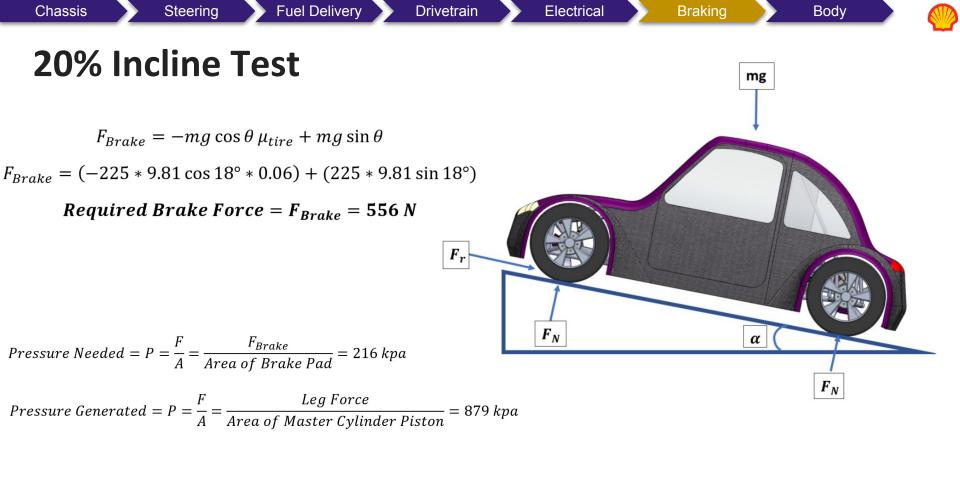
Wilwood Master Cylinder

Duralast New Master Cylinder

[32]

Final Concept

Concept Generation


Engineering Analysis

[33]

Material Selection

Speaker: DH Manufacturing & Testing

Slide Author: DH 73

Final Concept

Concept Generation

Speaker: DH Slide Author: SS

Manufacturing & Testing

74

 $F_B = \frac{\frac{1}{2}mV^2}{v}$

Maximum Force Required

Mass of the Vehicle = m = 225 kg

Steering

Maximum Velocity = $V = 11.6 \frac{m}{s} = 26 mph$

Stopping Distance = X = 11 m

Total Braking Force = $F_B = 1376 N$

$$Per Brake = F_B = 344 N$$

Pressure Needed to Stop Car =
$$P = \frac{F}{A} = \frac{F_{Brake}}{4 * Area of Brake Pad} = 292 kpa$$

Concept Generation

Speaker: DH Slide A

[34]

Slide Author: SS 75

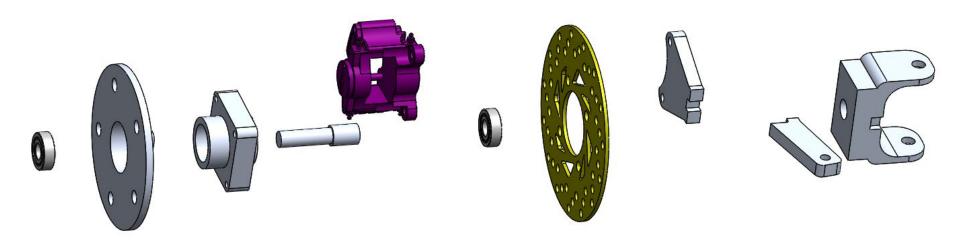
Manufacturing & Testing

Weight Reduction

Steering

- Original Selection:
 - Mustang II Disc Brake Rotor
 - 5 on 4-¾ Inch
 - \$131.96 (\$32.99 per hub)
- 44 lbf (11 lbf per hub)
- Team #44 Design:
 - 89% Weight Reduction
- Final Weight **4.8 lbf** (1.2 lbf per hub)

[35]


Mustang II Disc Brake Rotor

Final Concept

Speaker: DH Slide Author: MB 76

Front Hub

Speaker: DH Slide: SS 77 Manufacturing & Testing

Weight Reduction

Steering

Wheel and Tire Selection

- 15"-17" wheel diameter
- 3.15" minimum tire width •
- 1.6mm tire tread
- Tire profile must be flat •

February

- Week 2: Reduce weight with Ο End-mill by 1 kg per wheel
- Week 3: Attach rim and tire to Ο assembly

15″ 5kg [36]

T125/80 D15 4kg each

[37]

Final Concept

Speaker: DH Slide Author: CB Manufacturing & Testing

78

79

Testing

- Testing
 - 20% Incline Simulation Ο

Steering

Stopping Distance Confirmation Ο

- February
 - Week 4: 20% Incline Simulation Ο
- March
 - Week 1: Stopping Distance Ο Confirmation

Speaker: DH Slide Author: SS Manufacturing & Testing

Body

Final Concept

Concept Generation

Engineering Analysis

Material Selection

Speaker: HP Slide Author: HP 80
Manufacturing & Testing

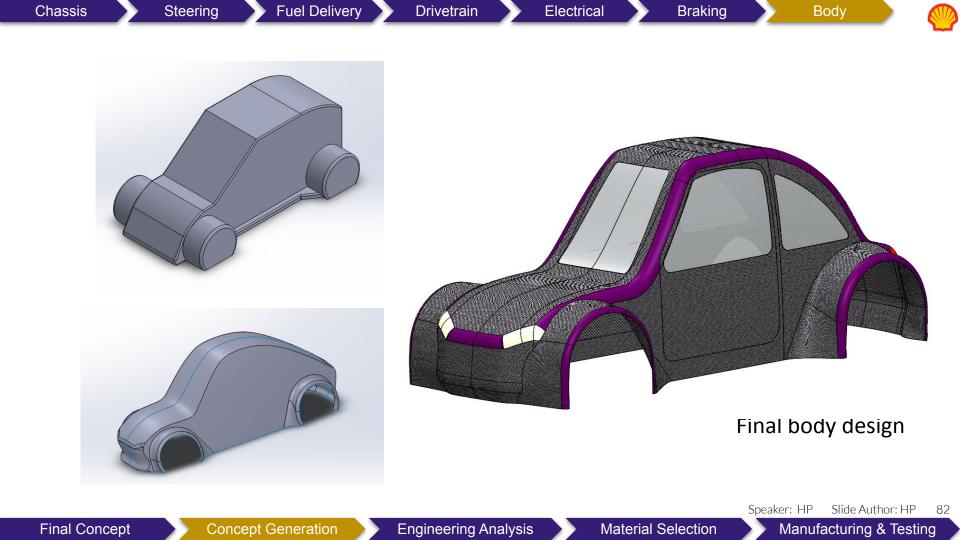
Body

Coupé style

[38]

SUV/Bus

Tear drop



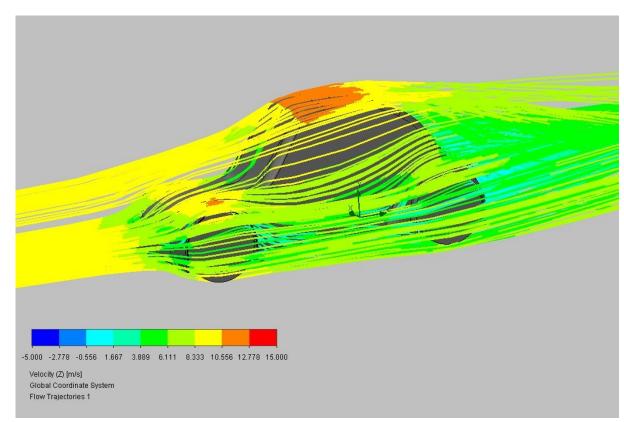
Hatchback

[41]

Final Concept

Speaker: HP Slide Author: HP 81
Manufacturing & Testing

Final Concept


Engineering Analysis

Material Selection

Aerodynamics

Steering

Concept Generation

$$F_D = C_D A \frac{\rho V^2}{2}$$

 $A = frontal area = 1.175 m^2$

$$\rho = fluid \ density = 1.199 \ \frac{kg}{m^3}$$

$$V_{avg} = average \ velocity = 10.730 \ \frac{m}{s}$$

 $F_D = drag force = 41.02 N$

 $C_D = drag \ coefficient = 0.5$

Speaker: HP Slide Author: HP 83 Manufacturing & Testing

Materials Selection

Steering

Materials	Thickness (mm)	Weight (kg)	Cost
Carbon fiber F-586 (x2)	0.5	2.6	\$205
105 Epoxy + Hardener	N/A	2.6	\$150
Total	~1	5.2	\$355

Speaker: HP Slide Author: HP 84

Final Concept

Engineering Analysis

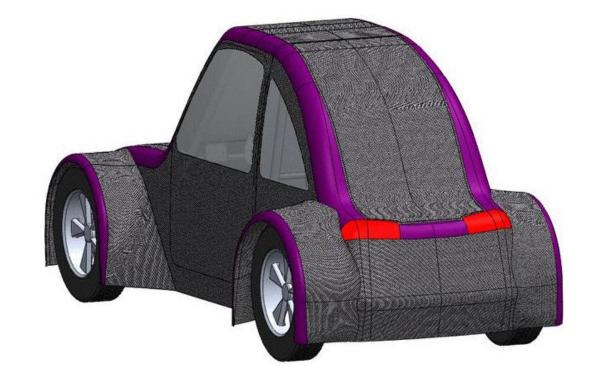
Manufacturing & Testing

Manufacturing Plan

Steering

- 1. Order Materials December
- 2. Foam shaping 2nd week of January (1-3 days)
 - a. Plywood template
 - b. Foam fills
- 3. Fiberglass female mould -3rd week of January
 - a. Fiberglass fabric
 - b. chopped strand mat
 - c. Epoxy and hardener
- 4. Carbon fiber body 4th week of January (7-10 days)
 - a. Carbon fiber
 - b. Epoxy and hardener
 - c. Vacuum Bagging

Suicide Doors


• Allow driver to exit vehicle quickly

Speaker: HP Slide Author: CB 86 Manufacturing & Testing

Removable Rear Hatch

Access to energy compartment for maintenance

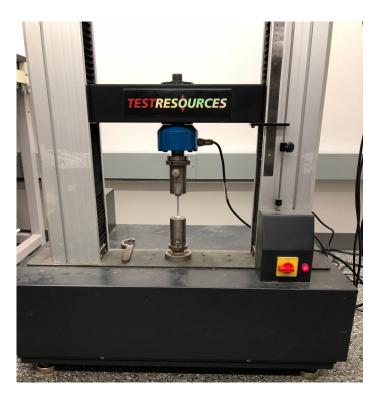
Trunk Door

Quick access for refueling

Final Concept

Speaker: HP Slide Author: HP 87 Manufacturing & Testing

Electrical



Testing Plan

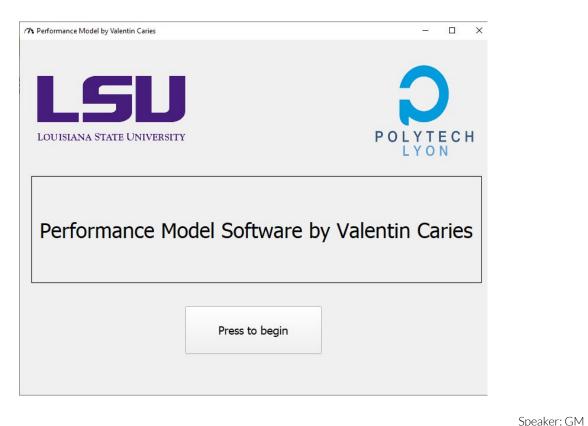
Steering

- Bending test to figure out the deflection under driving condition
- Tensile test to get the mechanical properties of the final body material
- January Week 1

[42]

Final Concept

Concept Generation


Engineering Analysis

Material Selection

Speaker: HP Slide Author: HP 88
Manufacturing & Testing

Performance Model

Slide Author: GM

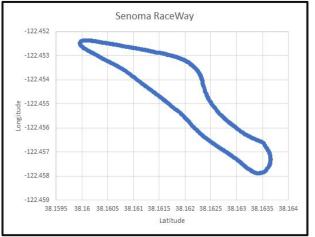
89

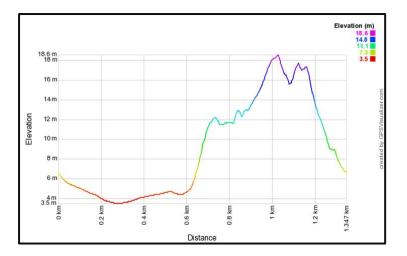
Input Parameters

Please enter the specs and press the button to set values or press on the bu	tton for defaut values
coCar	
Name : LSU Eco Car 2019 C0, C1, C2 : 6.0032 + 1.7100 -0.0450 Tipping Angle :	25.40 ° 🜲
Weight : 200.00 kg + K0, K1, K2 : 92.200 + -1.340(+ -0.2090 +	
Drag Coefficient : 0.50 - Wheel Padius : 0.202 m	
Front Area : 1.35 m2 + Rolling Resistance Coefficient : 0.60 +	Defaut Values
ngine	
Name: Honda GX35 Engine min RPM : 2200.0 rpm 🖨	
Gear Ratio : 9.000 + Engine max RPM : 3100.0 rpm +	
Gasoline per rev : 0.0102 kg 🗘 State : True	
	: Values
rack Security C	oefficients
Name : Sonoma Raceway Wind Velocity : 0.0 m/s 🗘 Curve :	1.00
Number of laps : 8 🖨 GPS Data : DataTrackGPS.xlsx Minimum	n speed : 1.00 🌲
Ambient Temperature : 15.0 °C 🗘	
Atmospheric pressure : 1.0 bar 🗘 Set Values Defaut Values Set	Values Defaut Values
ace	
Name : p-Marathon 2019 Minimum speed : 6.50 m/s 🖨 Maximum speed : 11.60 m/s 🖨	
Maximum Time : 25.00 min 🖨	Run Calculations
Velocity Minimum Interval : 1.50 m/s 🗢 Set Values Defaut Values	

Function

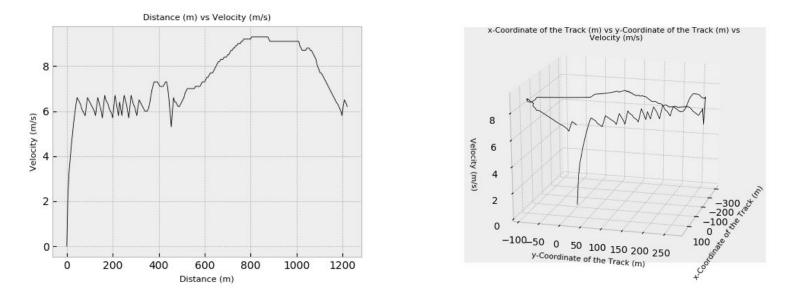
Projected Performance


Slide Author: GM


90

Speaker: GM

Track Information



 Model uses GPS data that can be gathered from any track, allowing us to test on any track.

Speaker: GM Slide Author: GM 91

Projected Performance

Predicted Performance

• Model predicts 806.23 MPG using this strategy.

Fur	ncti	or	
	100	<u> </u>	•

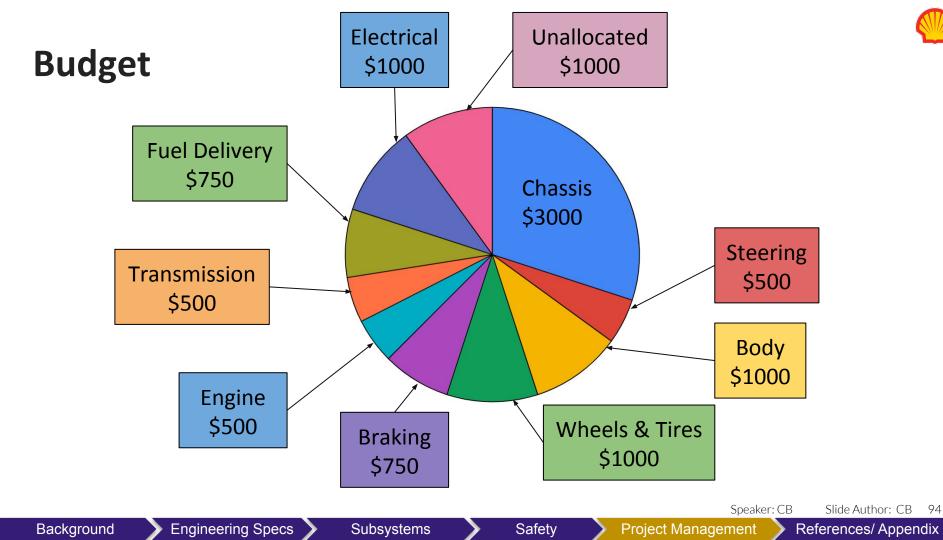
Speaker: GM Slide Author: GM 92 Projected Performance

Safety

- Max Tipping Speed for 6 m turn:
 - 6.86 m/s (15.3 mph)
 - Low Center of Gravity
- Safety Harness: 6 Points Connected to Frame
 - 200N
- Zero deformation roll bar
- Personal Protective Gear
- Kill switch

Driver Gear:

- Flame retardant suit, gloves, and shoes
- Helmet


- SFI 16.1 Profi 2x2
- Cost \$260 donated by Schroth Racing

Speaker: CB

Safety

Slide Author: MB

93

Timeline - Fall

search & Ideatior Existing Technologies Popular Strategies Efficiency Factors		Design \$ Assembly Synthesis Finalize Design Verify Subsystem Synthesis Draft Manufacturing Plan
Generate Concepts	October	December
September	 Design Determine Subsystems Begin Vehicle Design Optimize for Efficiency 	November Order Parts • Chassis • Body Mold • Engine • Electronics

Background

Subsystems

Speaker: CB **Project Management**

Slide Author: CB

References/ Appendix

959

References/ Appendix

Timeline - Spring

Order Parts Chassis Body Mold Engine Electronics 		anufacturing & sting NDT Testing Chassis Drivetrain Installation Steering Installation March		 Competition Analysis Analyze Flaws Determine Potential Improvements Create Packet for Next Year's Team 	
December	•	February		April	
	 Manufacturing Chassis Welding Body Shaping Engine Conversion CNC Custom Parts Order Miscellaneous Parts 	Te	Tune Engine Reduce Weight		

Subsystems

Timeline - Shell Registration

Phase 3b: Deadline

 Phase 1: Opens Vehicle Specifications Team sign-up Vehicle Photo 	• Power Fl	Dpens al Information low Diagram w Diagram Dec 17	Phase 3a: Deadline Phase 3b: Opens • Optional • Off-Track Award Registration	Apr 1
Sep 12	Nov 7	•	Feb 28	
• Phase 1:	Deadline	Phase 2: De Phase 3a: O • Logistics • Team Mem	pens • April 1-4	Detition Raceway

Subsystems

Speaker: CB Slide Author: CB **References/Appendix**

97

Final Weight: ~ 143 kg (315 lbs)

Background

Subsystems

Project Management

Speaker: CB **References/ Appendix**

Slide Author: CB 98

References

- [1] https://www.shell.no/about-us/events/shell-eco-marathon.html
- [2] Picture received from Shell
- [3] https://www.flickr.com/photos/shell_eco-marathon/48872601902/
- [4] https://www.flickr.com/photos/shell_eco-marathon/albums/72157704199391552/with/46637461645/
- [5] https://www.carfax.com/blog/unibody-vs-body-on-frame-construction
- [6] http://compositesmanufacturingmagazine.com/2017/07/mclaren-supply-carbon-chassis-automakers/
- [7]
- <u>https://www.researchgate.net/figure/The-specific-modulus-E-r-and-specific-strength-s-f-r-of-cortical-and-cancellous-bone_fig1_305984837</u> [8] https://www.pipingengineer.org/dye-penetrant-inspection/
- [8] <u>https://www.pipingengineer.org/dye-penetrant-inspection</u>
- [9] <u>https://engines.honda.com/models/model-detail/mid-gx</u>
- [10] https://www.surpluscenter.com/Brands/Leeson/3-HP-1800-RPM-115-208-230-Volt-AC-184TC-Leeson-131631-00-Motor-10-2886.axd
- [11] https://www.greenoptimistic.com/ceramic-membrane-hydrogen-fuel-cell-20171118/
- [12]<u>https://www.123rf.com/photo_51774341_chisinau-moldova-november-12-2015-photo-of-coca-cola-plastic-bottle-isolated-on-white-back</u> ground-coc.html
- [13]https://www.walmart.com/ip/Carter-M60048-Mechanical-Fuel-Pump/107355058
- [14] https://www.ecotrons.com/small_engine_fuel_injection_kit/
- [15] https://www.gopowersports.com/tav-30-75-torq-a-verter-comet-after-market/
- [16] https://brickseek.com/p/centrifugal-clutch-3-4-bore-35/6015163
- [17] https://grabcad.com/library/chain-and-sprocke
- [18] <u>http://www.tristate-bearing.com/supplier-distributor-belts-sheaves-pulleys.html</u>
- [19] https://www.motioncontroltips.com/spur-gears-what-are-they-and-where-are-they-used/
- [20] https://www.quora.com/What-characteristics-or-issues-of-an-engine-can-I-deduce-by-just-knowing-its-RPM
- [21] https://engines.honda.com/models/model-detail/mid-gx
- [22] <u>https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-4-Product-Brief.pdf</u>

References

[23] https://store.arduino.cc/usa/arduino-uno-rev3

[24] https://components101.com/ics/Im1084-low-dropout-positive-regulator

[25] http://www.ti.com/sitesearch/docs/universalsearch.tsp?searchTerm=lm27402#q=lm27402&t=everything&linkId=1

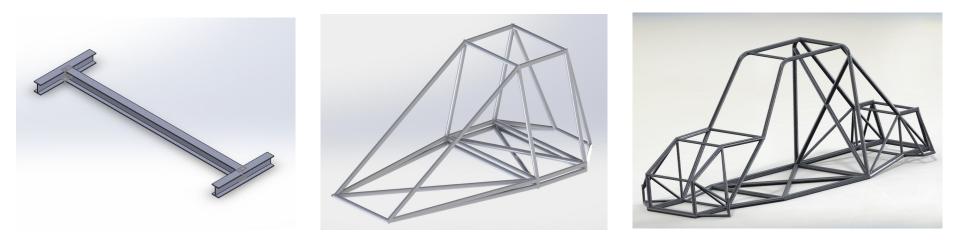
[26] https://www.ecotrons.com/files/ECOTRONS%20Engine%20Control%20Unit%20(ECU-4T2C)%20technical%20spec.pdf

[27] https://www.ecotrons.com/files/ECOTRONS%20Engine%20Control%20Unit%20(ECU-2T1C)%20technical%20spec.pdf

[28]<u>https://www.amazon.com/Powersonic-PS-12550-Battery-Nut-Bolt-Terminal/dp/B004HN5BGE/ref=sr_1_24?keywords=lead+acid+battery+</u>

<u>12v+55ah&qid=1575213759&sr=8-24</u>

[29] <u>https://www.lithiumion-batteries.com/products/12v-50ah-lithium-ion-battery/12v-50ah-lithium-ion-battery.php#</u>


- [30] https://www.wilwood.com/calipers/caliperprod?itemno=120-12178
- [31]https://www.wilwood.com/Search/PartNoSearch?q=ps1
- [32] https://www.wilwood.com/MasterCylinders/MasterCylinderList?group=Compact%20Remote%20Master%20Cylinder

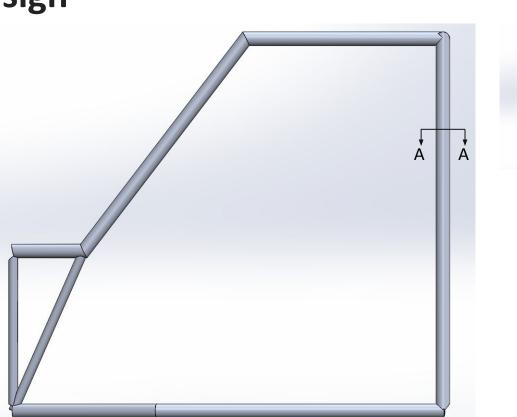
[33] https://www.autozone.com/brakes-and-traction-control/

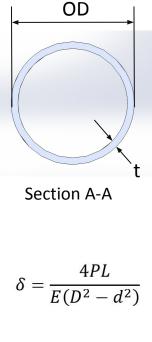
- [34] https://kmjperformance.com/wilwood-340-13833-floor-mount-clutch-brake-pedal-6-1-ratio.html
- [35] https://www.speedwaymotors.com/Mustang-II-Disc-Brake-Rotor-5-on-4-3-4-Inch,34436.html
- [36] https://www.performanceplustire.com/
- [37] <u>https://www.tirerack.com/tires/TireSearchResults.jsp?width=125/&ratio=80&diameter=15</u>
- [38] https://www.autoblog.com/2010/10/18/2011-shell-eco-marathon-americas-includes-additional-category-p/
- [39] http://www.ecocar.mek.dtu.dk/english/dtu-dynamo/about-the-urban-concept-class
- [40] https://www.thesamba.com/vw/forum/viewtopic.php?t=624284&start=0&postdays=0&postorder=asc&highlight=
- [41] https://innovate.dreamcatcher.asia/shell.html
- [42] https://www.mtu.edu/materials/k12/experiments/tensile/
- [43] <u>https://www.schrothracing.com/products/sfi-16.1-harnesses</u>

Other Designs Generated

Concept Selection

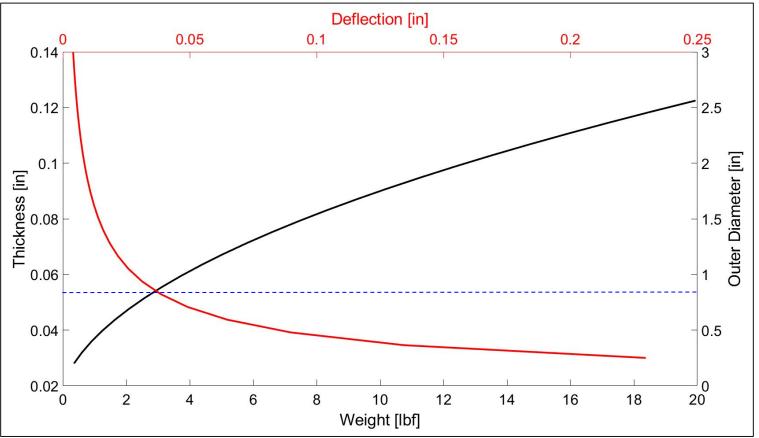
Metric	Weight	Ladder	Monocoque	Space Frame	l Beam
Cost	0.20	0.27	0.08	0.27	0.38
Weight	0.33	0.18	0.39	0.23	0.19
Manufacturable	0.25	0.38	0.11	0.23	0.28
Safety	0.22	0.18	0.33	0.31	0.18
Score		0.25	0.21	0.26	0.25

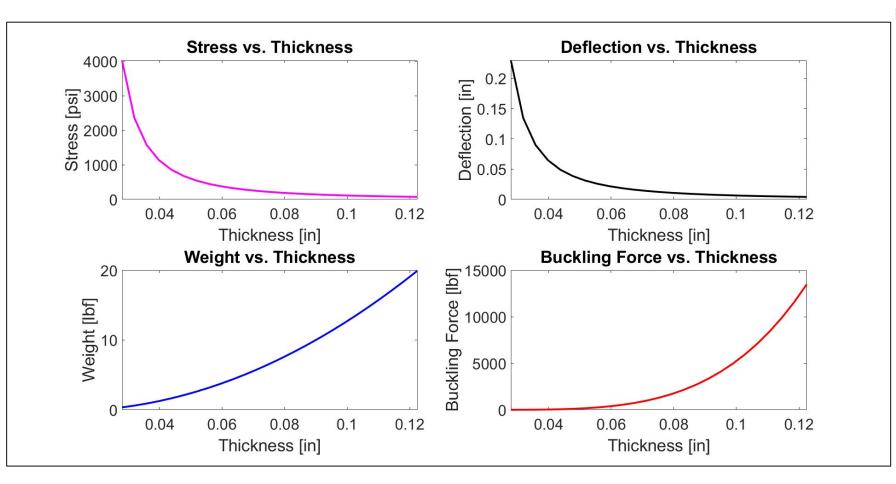

Parametric Design

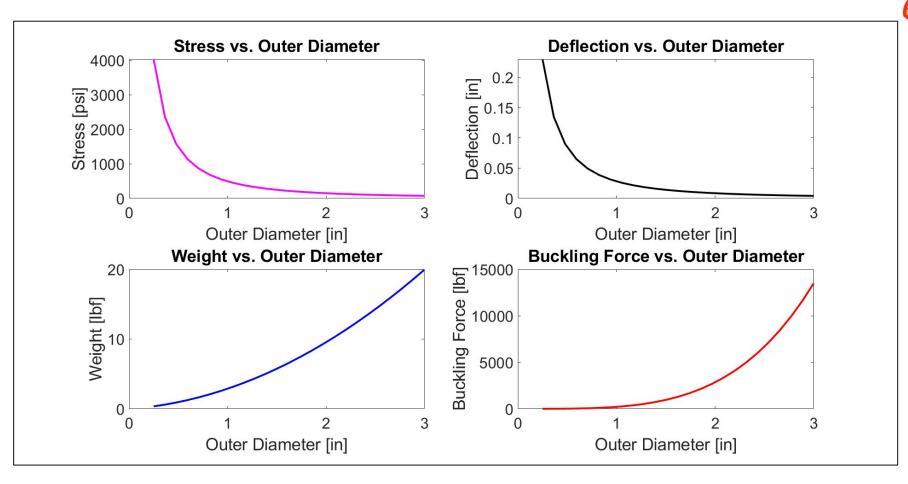

- Total Length = 4.7 m (185.08 in)
- Arbitrary Load = 700 N (78.7 lbf)
- Material Properties:

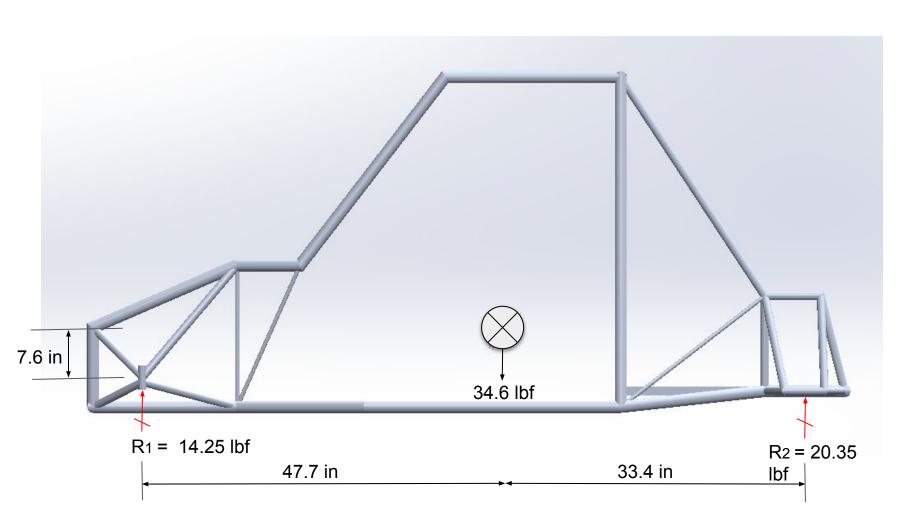
 $E = 70.3 \ GPa$ $\rho = 2688 \frac{kg}{m^3}$

$$\sigma = \frac{4P}{\pi (D^2 - d^2)}$$

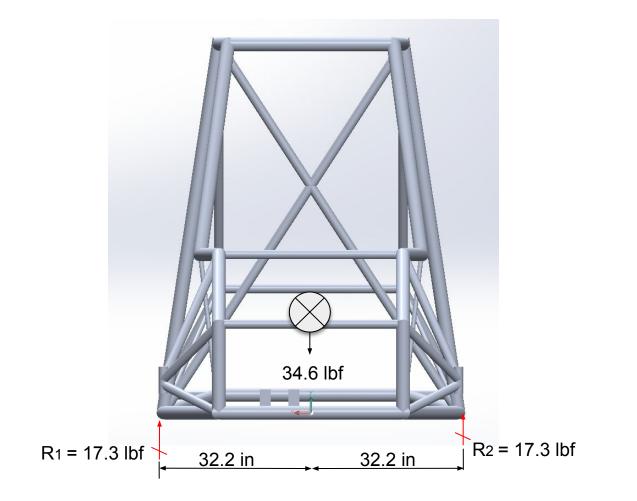

$$F_{cr} = \frac{\pi^3 E}{16L^2} (D^4 - d^4)$$



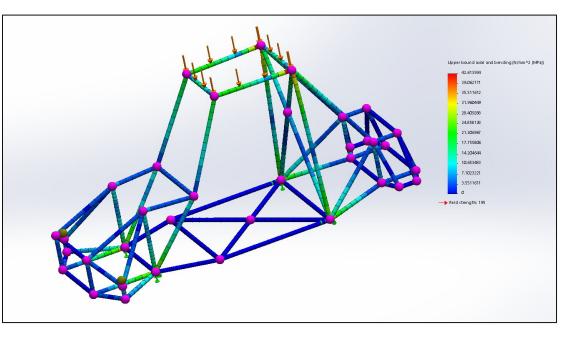



$$W = \frac{g\rho\pi}{4}(D^2 - d^2)$$

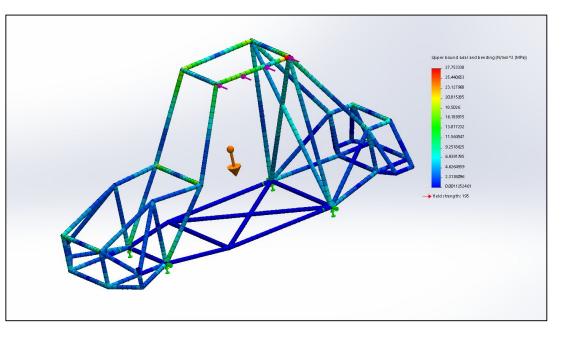
Weight & Deflection vs. Tube Size



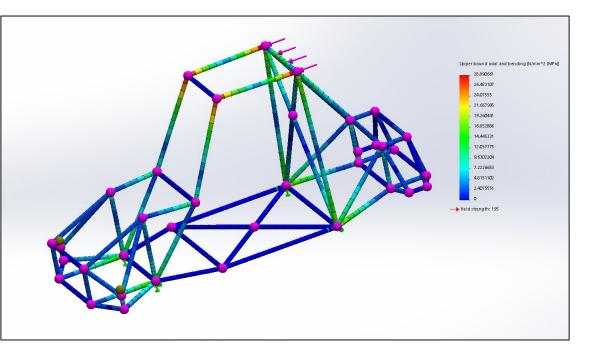
Slide Author: MB



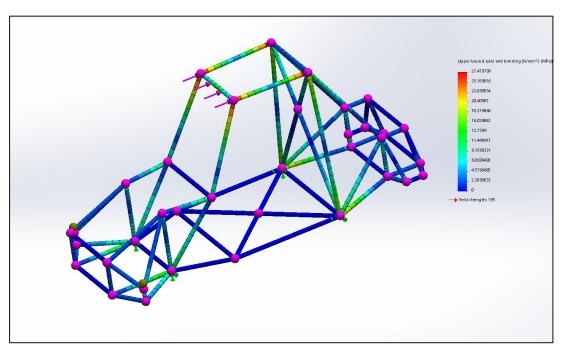
Chassis: 700 N Downward


- Von Mises Stress: 42.6 MPa
- F.S. = 4.58
- Max displacement: 3.62 mm (0.14 in)

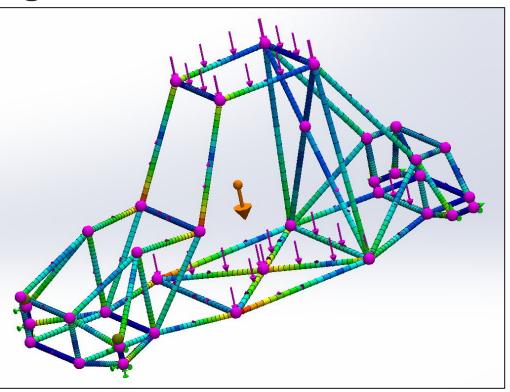
Chassis: 700 N Side


- Von Mises Stress: 27.8 MPa
- F.S. = 7.03
- Max displacement: 2.54 mm (0.10 in)

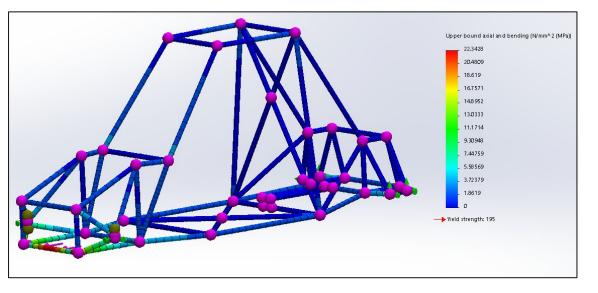
Chassis: 700 N Back


- Von Mises Stress: 28.9 MPa
- F.S. = 6.75
- Max displacement: 2.82 mm (0.11 in)

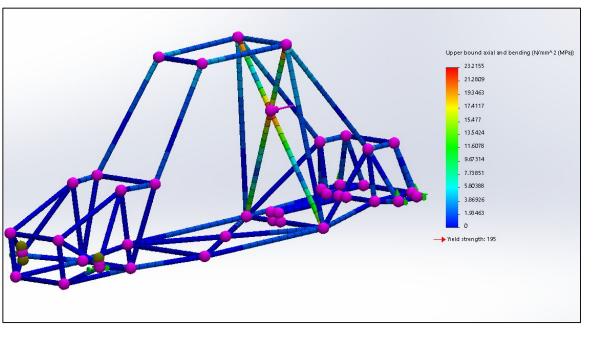
Chassis: 700 N Front


- Von Mises Stress: 27.5 MPa
- F.S. = 7.10
- Max displacement: 2.96 mm (0.12 in)

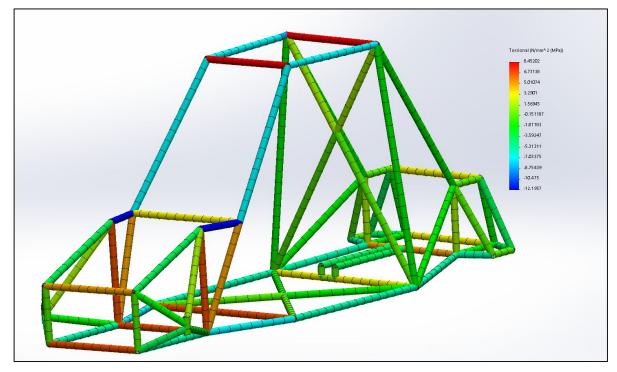
Chassis: Driver, Body, Engine


- Driver, Body, and Engine: 48.2 MPa
- Max Deflection: 6.0 mm (0.24 in)
- F.S. = 4.05

Chassis: Tow Hook

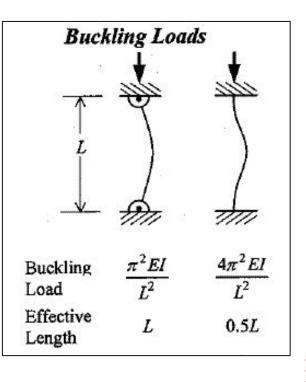

- Von Mises Stress: 22.3 MPa
- F.S. = 8.74
- Max displacement: 0.42 mm (0.02 in)

Chassis: Safety Harness


- Von Mises Stress: 23.2 MPa
- F.S. = 8.40
- Max displacement: 1.77 mm (0.07 in)

Chassis: Torsional Load

- 1.96 G's
- Max Torsion 8.45 MPa
- F.S. = 8.09
- 0.4 degrees rotation



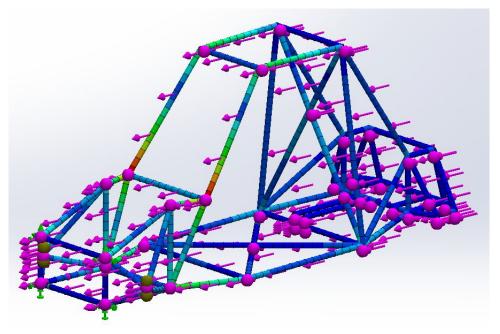
Critical Force for Buckling

• Assuming fixed ends on both sides:

 $L_e = \frac{L}{2}$ $F_{cr} = \frac{4\pi^2 EI}{I^2}$ $I = \frac{\pi (D^4 - d^4)}{\epsilon_A}$ $F_{cr} = 4,864 N$

https://blogs.solidworks.co m/tech/2016/09/nonlinearbuckling-no-penetration-con tact-support-2017.html

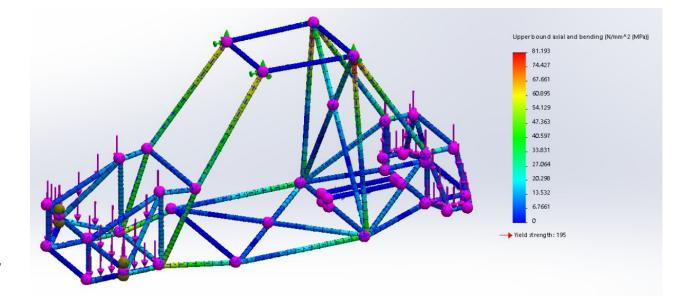
• A force of 4,864 N (1,093 lbf) is required to buckle the 1.5" OD and 0.083" thick tube.


Slide Author: MB

Chassis: Dynamic Load

- Impact Analysis Performed:
 - Vertical Drop Test by 1 Foot
 - Side Drop Test from 1 Foot
 - Horizontal Drop Test from 1 Foot
 - Frontal Crash
 - Side Impact from moving car
- Minimum Factor of Safety:
 - Frontal Crash: 185.2 MPa
 - Max Deflection: 0.047 mm (1.85 in)
 - F.S. = 1.05
 - Impact Factor: 8.11

$$n = \sqrt{\frac{\eta v^2}{g \,\delta_{static}}}$$

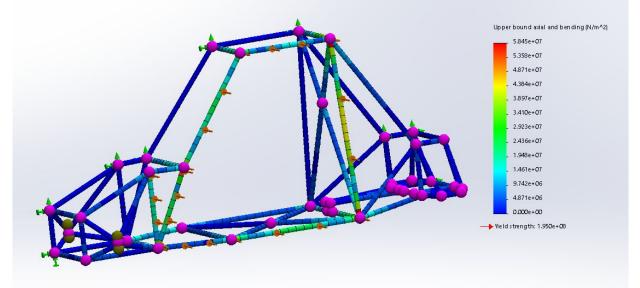


Vertical Drop Test from 1 Foot

- Max Stress: 81.19 MPa
- F.S. = 2.40
- Impact Factor: 26.2

$$n = 1 + \sqrt{1 + \frac{2h\eta}{\delta_{static}}}$$

 Max Deflection: 0.0227 m (0.9 in)

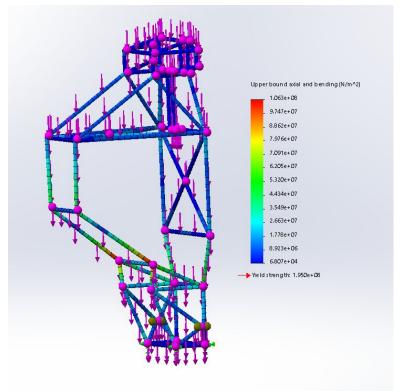


Side Drop Test from 1 Foot

- FEA Static Analysis Performed:
 - 1 Foot Drop Test
 - Max Stress: 58.4
 MPa
 - F.S. = 3.34

$$n = 1 + \sqrt{1 + \frac{2h\eta}{\delta_{static}}}$$

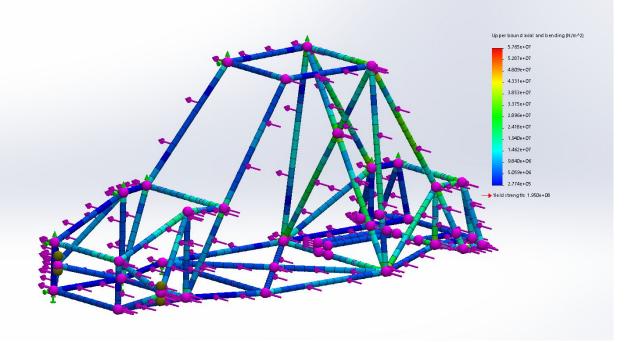
- Impact Factor: 47.8
- Max Deflection:
 0.00281 m (0.11 in)



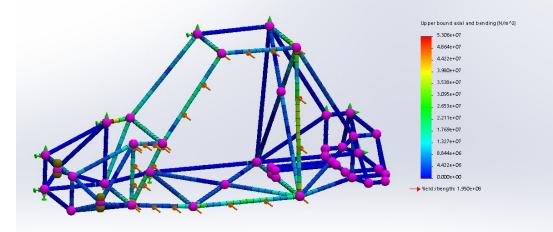
Horizontal Drop Test from 1 Foot

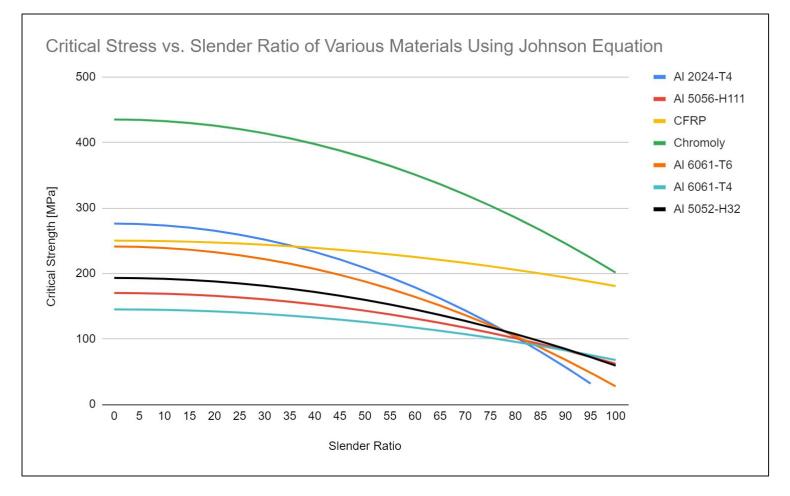
- FEA Static Analysis Performed:
 - Max Stress: 106.3 MPa
 - F.S. = 1.83

$$n = 1 + \sqrt{1 + \frac{2h\eta}{\delta_{static}}}$$


- Impact Factor: 4.65
- Max Deflection: 0.0271 m (1.1 in)

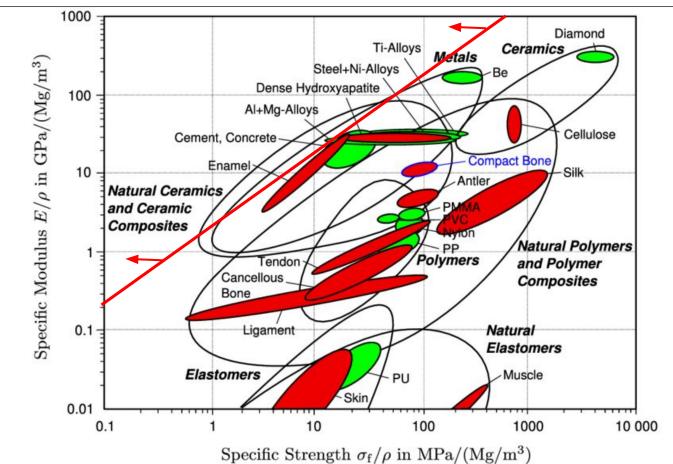
2G Force from Side


- FEA Static Analysis Performed:
 - Max Stress: 58.4MPa
 - F.S. = 3.34
- Max Deflection: 0.00262
 m (0.10 in)



Side Impact from Car

- Assume a 225 kg vehicle traveling 26 mph
- Distributed Force: 1245 N/m
- Max Stress: 53.1 MPa
- F.S. = 3.67
- Max Deflection: 0.00235 m (0.1 in)


 Chassis Material Index: Light, Stiff, and Strong Tie Rod

 $M_1 =$

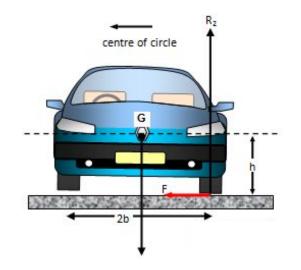
 $M_2 =$

 $M = \frac{E}{\rho} * \frac{\rho}{\sigma_f}$

 $M = \frac{E}{\sigma_f}$

Metric	Weight	CFRP	Al 6061-T6	AI 5052-H32	4130N Steel
Cost	0.18	0.12	0.26	0.26	0.36
Weight	0.36	0.41	0.23	0.22	0.14
Manufacturable	0.27	0.14	0.23	0.28	0.35
Safety	0.18	0.18	0.25	0.25	0.32
Score		0.24	0.23	0.25	0.21

Al 5052 Properties	Metric	English
Ultimate Tensile Strength	228 MPa	33 ksi
Yield Tensile Strength	193 MPa	28 ksi
Modulus of Elasticity	70.3 GPa	10200 ksi


Slip vs. Tip Analysis

- Sharpest Turn: 6 m
- Coefficient of Friction of Tires: 0.8

$$v=\sqrt{\mu_s gr}$$

- Max velocity: 6.86 m/s (15.3 mph)
- •
- Tipping Angle: 49.2°

$$\theta_{tip} = \tan^{-1} \frac{b}{h}$$

http://www.schoolphysics.co.uk/age16-19/Mechanics/Circular%20motion/text/Cars_cornering/index. html

Chassis: Weld Analysis

Material		Electrode	
Tensile Strength (Mpa)	195	Tensile Strength (Mpa)	62
Yield Strength (Mpa)	89.6	Yield Strength (Mpa)	50
Allowable Stress (Mpa)	35.84	Allowable Stress (Mpa)	18.6
Total Allowable Stress (Mpa)		18.6	

Force (lbs)	700
Length of Weld (in)	3.141593
h (in)	0.3125
Throat Area (in^2)	0.694096
Moment Arm (in)	7

Mpa	6.95
Safety Factor	2.67

Off-Track Award: Communications Award

- Create multiple outlets for promotion of the competition and the team through social media.
- Apply online with a **Communication Plan, Impact** Analysis, and Campaign portfolio.

12 following 16 posts 79 followers

LSU Urban Concept

We are building a vehicle to compete in the UrbanConcept class of the Shell Ecomarathon Competition. Follow our journey from design to competition! www.shell.com/make-the-future/shell-ecomarathon.html

SAVED I TAGGED

Off-Track Award: Vehicle Design Award

- Design an original and coherent vehicle in terms of aesthetics, ergonomics, technical feasibility, choice of materials, and eco-friendliness.
- Submit an application with various views of the design with details about each aspect.

https://www.flickr.com/photos/shell_eco-marathon/47486506532/in/album-72157707742297034/

Off-Track Award: Technical Innovation Award

- Demonstrate outstanding technical ingenuity with new materials, components and inventions in the drive train, chassis, body, instrumentation, and tires.
- Must submit an application with photographs, drawings, or animations demonstrating technical innovation.

https://www.flickr.com/photos/shell_eco-marathon/48198625877/in/album-72157709143080816/

Off-Track Award: Safety Award

- Demonstrate excellent understanding of safe design concepts, road safety, and safe manufacturing process.
- Must pass technical inspection.
- Submit an application with supporting videos, photographs, documents, and drawings.

https://www.flickr.com/photos/shell_eco-marathon/47480052072/in/album-72157706137660511/

Off-Track Award: Perseverance & Spirit of the Competition Award

- Does not require application
- Award: \$3,000
- Chosen by the organizers
- Examples include:
 - Overcoming great obstacles to attend Shell Eco-marathon
 - Mastering exceptional challenges during competition
 - Supporting other participants
 - Keeping high spirits, showing outstanding resilience, resolve, and resourcefulness

https://www.flickr.com/photos/shell_eco-marathon/336762 22738/in/album-72157690531148133/

Off-Track Award: Circular Economy Award

- Develop an innovative concept with focus on re-manufacturable materials, minimizing natural resources, maximizing material reuse, and biodegradable products.
- Apply with a report describing the circular design, images of the design, and the solution scaled to tackle real life problems.

https://www.flickr.com/photos/shell_eco-marathon/48198626777/in/album-72157709143080816/